

An Abrocitinib Surrogate Molecule Reduces Disease Severity and Protects Skin Barrier Integrity in a Humanized Mouse Model of Atopic Dermatitis Flare-Ups

Sofoklis Koudounas¹, Markus Fehrholz¹, Amos Gilhar², Ralf J Ludwig^{1,3}, Kristian Reich⁴, Melissa Watkins⁵, Janin Edelkamp¹, Ilaria Piccini¹, Marta Bertolini¹

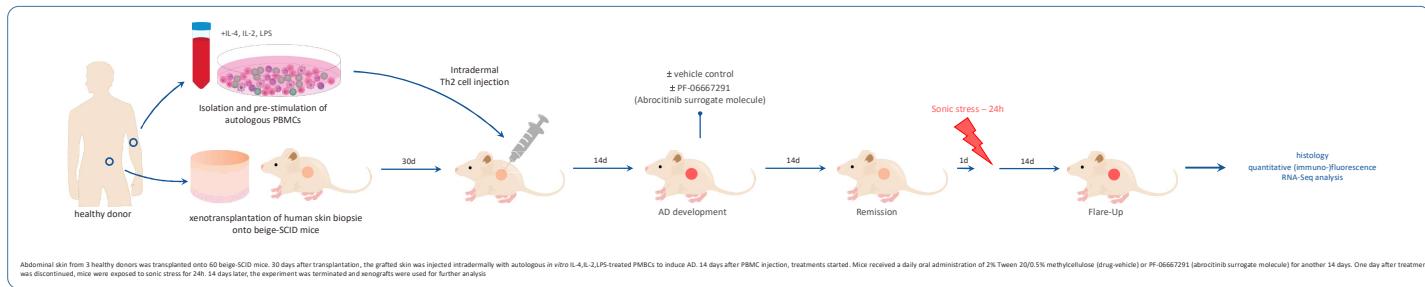
1. QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany; 2. Rapaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel; 3. University of Schleswig-Holstein, Lübeck, Germany; 4. University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 5. Pfizer Inc, New York, NY, USA

QIMA

Life Sciences

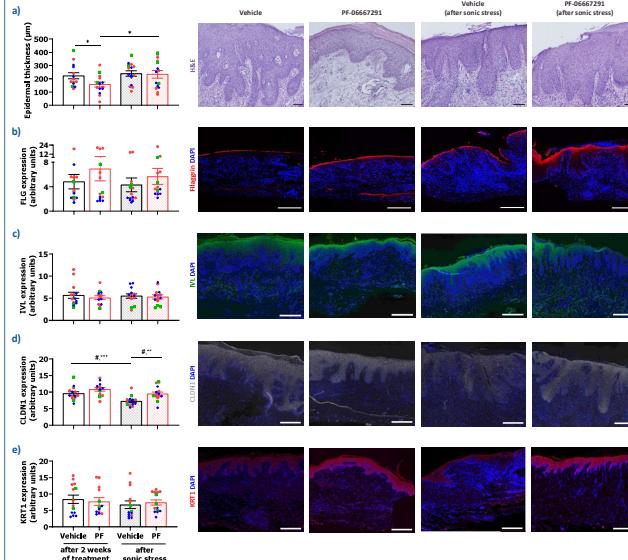
Background

Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by immune cell activation, impairment of the skin barrier and waves of disease recurrence [1, 2]. AD recurrences are suggested to be mediated by memory T-cells (see Figure on the right) [3]. Key disease pathways of AD include the Th2-derived cytokines IL-13 and IL-4. Indeed, their blockade by biologics prompted significant improvements in patients with moderate-to-severe AD [4]. However, unlike other skin inflammatory diseases, targeting those cytokines only resolves AD in around 38% of the patients [5]. Thus, more efficient treatments are sought after, which also reduce disease reappearances. The Janus activated kinase 1 (JAK1) inhibitor Abrocitinib has demonstrated efficacy in clinical studies in AD patients [6]. JAK signalling is induced by various cytokines, including IL-4, -13, -31, -6, -15, -22 or interferons, and regulates T-cell differentiation and function [7]. Given its broad spectrum of activity, the beneficial effects of Abrocitinib in ameliorating AD may exceed the scope of clinical findings [6].

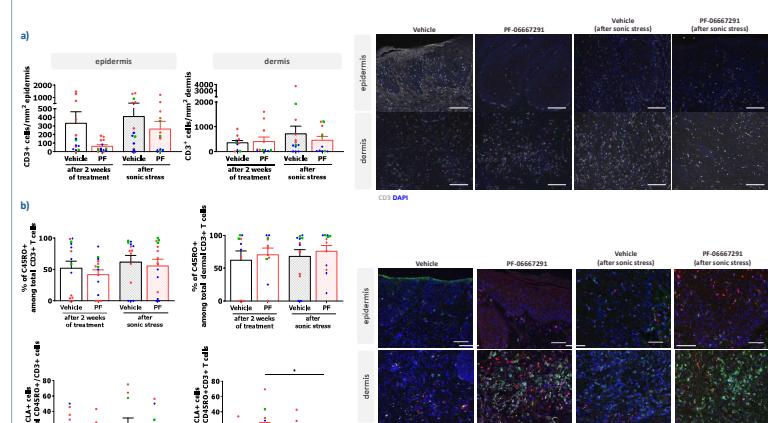

Aim of the study

To investigate mechanisms whereby Abro reduces AD disease recurrence using a humanized AD mouse model in which disease relapse can be observed following exposure to sonic stress.

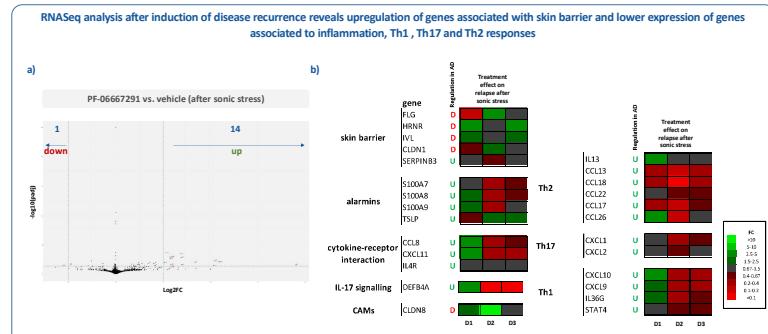
Take-home Message


"Abrocitinib reduces AD disease relapses in humanized mice, characterized by increased barrier function, potentially via keratinocyte responses to Abro and/or interference with the expansion and/or survival of skin homing CLA+ memory T-cells"

Methods



Results


Treatment with PF-06667291 significantly reduces epidermal thickness, and increases Filaggrin and Claudin-1 expression also after disease flare-ups, while Involucrin and Keratin 1 expression are not affected

Treatment with PF-06667291 induces a trend towards reduced CD3+ T cells, CD3+CD45RO+ memory T cells, and skin homing CD3+CLA+ T cells.

Figure 2. Analysis of PF-06667291 (abrocitinib surrogate molecule) treated AD-induced xenotransplanted skin 2 weeks after treatment and after disease flare up induction by sonic stress exposure. (a) The number of CD3+ T-cells was determined in the dermis and epidermis. Representative images are shown on the right. (b) The number of skin resident CD3+CD45RD+ T cells, and skin homing CD3+CL4+ T cells was determined in the dermis and epidermis. Representative images are shown on the right. meanSEM, $n=10$ mice/experimental group from $n=3$ independent human donors. D' Agostino & Pearson test for normal distribution. Mann Whitney test, $p<0.05$.

Conclusion

PF-06667291 reduces the severity of sonic stress-induced inflammatory relapses and enhances barrier integrity in AD-induced xenografts. These findings indicate that keratinocyte responses to Abro may play a role in its capacity to prevent the recurrence of AD flares. Additionally, PF decreases the number of skin-homing CLA+CD3+ T cells, further implicating a role for these cells in the recurrence of AD flare-ups.