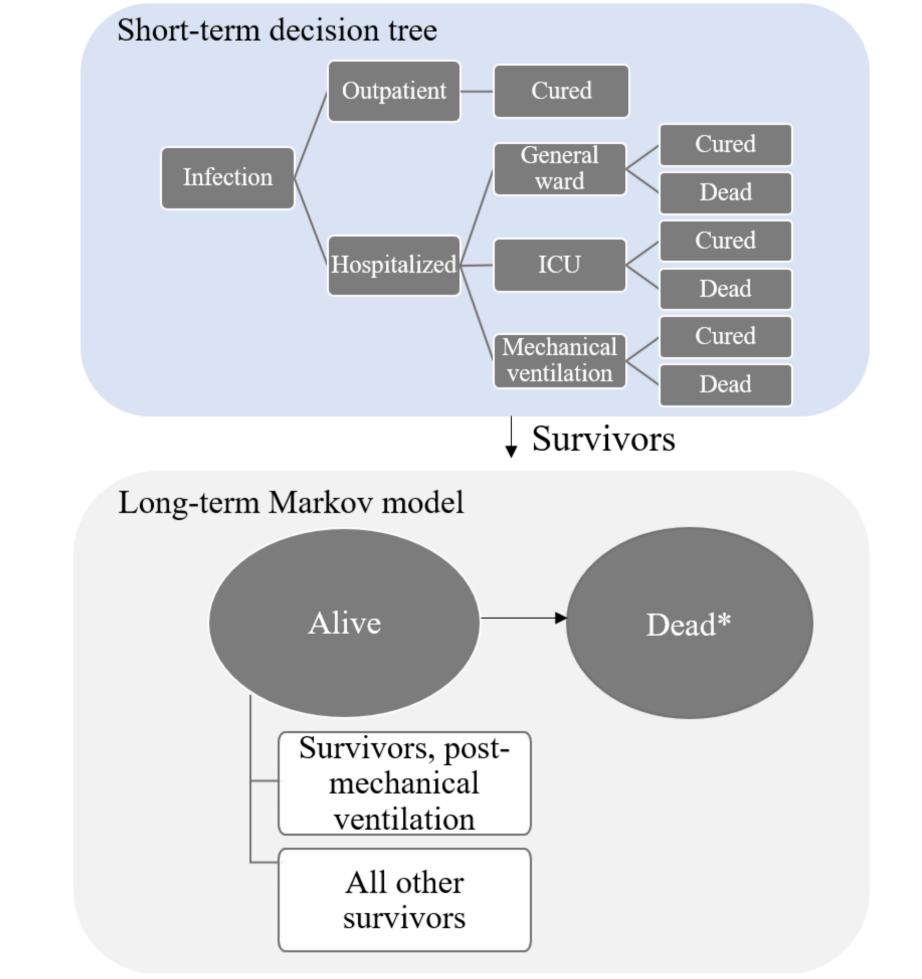
Cost-effectiveness of Oral Nirmatrelvir/ritonavir in Patients at High Risk for Progression to Severe COVID-19 in the United States

Josh Carlson^{1,2}, Volker Foos³, Adam Kasle¹, <u>Tendai Mugwagwa</u>⁴, Florin Draica⁵, Timothy Lee Wiemken⁵, Jennifer L Nguyen⁵, Ashley Cha-Silva⁵, Kristen Migliaccio-Walle¹, Mendy Dzingina⁴

1. Curta, Inc. Seattle, Washington, USA 2. The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute University of Washington. Seattle, Washington, USA 3. Health Economics and Outcomes Research, Ltd. Cardiff, United Kingdom 4. Pfizer, Ltd. Tadworth, Surrey, United Kingdom 5. Pfizer, Inc. New York, NY, USA


INTRODUCTION

- The coronavirus disease 2019 (COVID-19) pandemic imposed a significant strain on healthcare systems with broad medical, economic, and social impacts globally
- Antiviral therapies have played a critical role in improving clinical outcomes for patients with COVID-19. Several antiviral treatments are available in the United States (US) for outpatient use
- Nirmatrelvir/ritonavir (NMV/r) is indicated for the treatment of mild-to-moderate COVID-19 in adults who are at high risk for progression to severe COVID-19¹
- The objective of this study was to estimate the costeffectiveness of NMV/r vs best supportive care (BSC [no antiviral treatment]) from a US health sector perspective

METHODS

- A cost-utility model was developed using a short-term decision-tree followed by a lifetime two-state Markov model (Figure 1)
- The short-term decision-tree captured costs and outcomes associated with the primary infection and healthcare utilization; survivors of the short-term decision-tree were followed until death assuming US quality-adjusted life years (QALYs), adjusted in the short-term for survivors of mechanical ventilation (MV)

Figure 1: Model Structure

- *Death due to general population mortality
- Costs and QALYs were discounted at 3.0% annually;
 the willingness to pay threshold was set to \$150,000
- Clinical, cost and utility inputs were derived from published literature, focusing on the recent COVID-19 era of vaccinated patients and predominance of the Omicron variant (**Table 1**)^{2; 4-11}
- The BSC hospitalization rate for patients with COVID-19 (3.43%) and effectiveness of NMV/r in reducing hospitalizations (79.60%) were taken from Lewnard et al. 2023²
- In the short-term decision tree, we assumed no outpatient mortality due to COVID-19 infection
- Deterministic (DSA) and probabilistic sensitivity analyses (PSA) were conducted for all model inputs to test the robustness of the model results

METHODS (continued)

- In the DSA, parameters were varied by +/- 10% of the base case value or within 95% confidence intervals, where available; PSA input distribution selections were based on Briggs et al. 2012³
- Outpatient healthcare resource use and the impact of NMV/r on post-COVID conditions were excluded in the base case to achieve more conservative estimates

Table 1. Base Case Model Inputs			
Patient Characteristics and Clinical Inputs	Value		
Age (years) ²	45		
Hospitalization rate, BSC ²	3.43%		
NMV/r reduction in hospitalization (calculated as: [1 - adjusted hazard ratio (vs untreated)] x 100%) ²	79.60%		
Proportion hospitalized in general ward ⁴	84.33%		
Proportion hospitalized in intensive care unit (ICU) ⁴	15.67%		
Proportion in ICU receiving mechanical ventilation (MV) ⁴	39.80%		
Length of stay, general ward (days)5	6		
Length of stay, ICU (days) ⁵	21		
Length of stay, ICU/MV (days)5	22		
Mortality rate, general ward ⁶	2.40%		
Mortality rate, ICU ⁶	20.90%		
Mortality rate, ICU/MV ⁶	34.76%		
Duration of outpatient symptoms (days) ⁷	8.06		
NMV/r reduction in infection duration ⁸	20%		
Utility Inputs	Value		
Baseline utility ⁹	0.86		
Disutility, outpatient symptom day ⁵	-0.29		
Disutility, general ward hospitalization ⁵	-0.64		
Disutility, ICU hospitalization ⁵	-0.57		
Disutility ICU/MV hospitalization ⁵	-0.80		
Disutility, 1st year post-MV discharge10	-0.13		
Disutility, 2-5 years post-MV discharge ¹⁰	-0.04		
Cost Inputs	Value		
NMV/r treatment ¹¹	\$1,390		
General ward cost per day ⁵	\$5,665		
ICU cost per day ⁵	\$2,729		
ICU/MV cost per day ⁵	\$4,814		
1st year additional cost, post-MV discharge12	\$8,412		

RESULTS

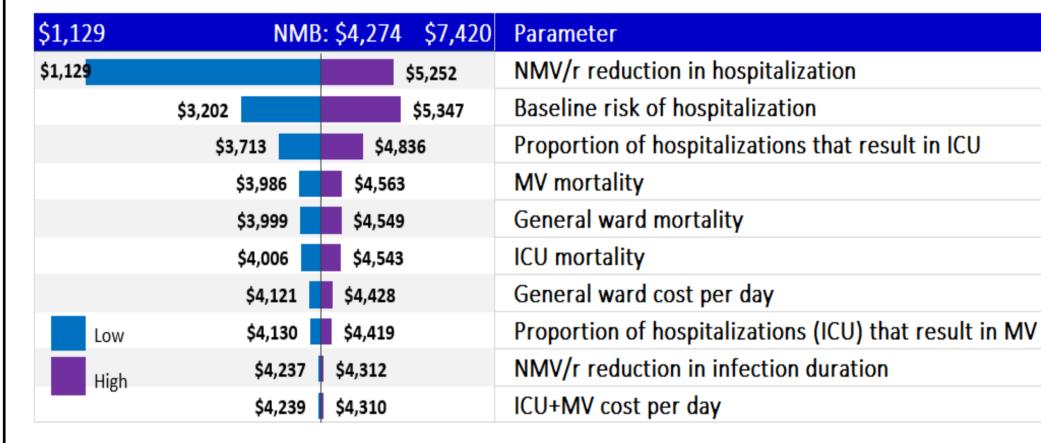

 Through a reduction in hospitalizations (-0.027) and hospitalization costs (-\$1,110), treatment with NMV/r resulted in an ICER of \$8,931 vs BSC, well below the willingness to pay threshold (Table 2)

Table 2. Base Case Results			
Outcome	NMV/r	BSC	Incremental
Hospitalizations	0.007	0.034	-0.027
Treatment cost	\$1,390	\$0	\$1,390
Hospitalization cost	\$285	\$1,395	-\$1,110
Post-MV discharge cost	\$2	\$11	-\$9
Total discounted costs	\$1,677	\$1,406	\$271
Total discounted QALYs	17.39	17.36	0.03
ICER			\$8,931
Net monetary benefit (NMB)			\$4,274

RESULTS (continued)

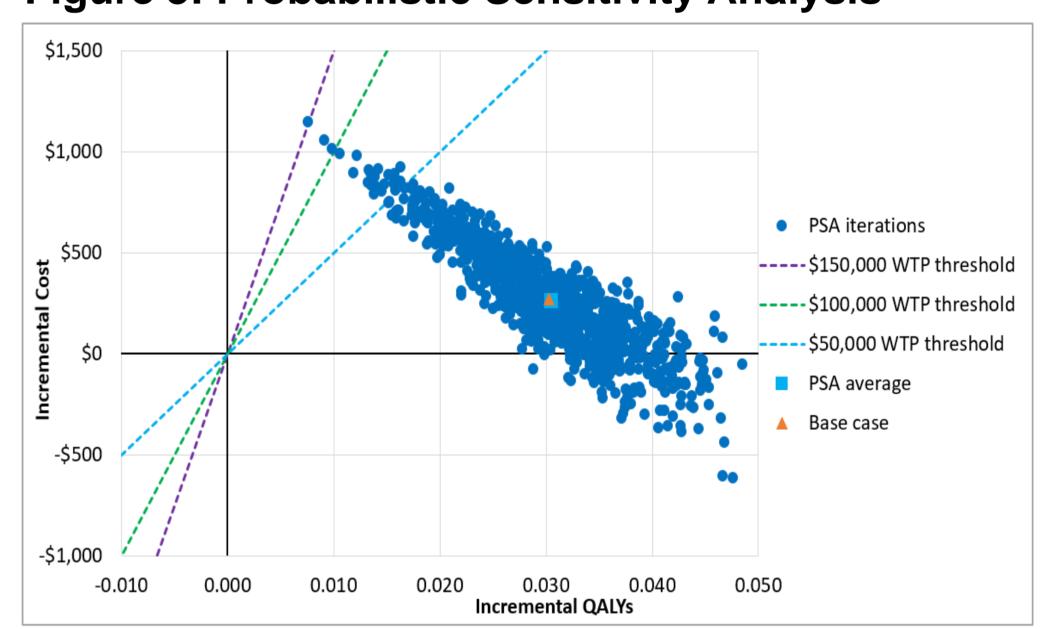

 DSA results were most sensitive to changes in the and NMV/r reduction in hospitalization and BSC hospitalization rate (Figure 2)

Figure 2: Deterministic Sensitivity Analysis

The PSA indicated that NMV/r has a >99% probability of being cost-effective at a \$100,000 willingness to pay threshold (**Figure 3**)

Figure 3: Probabilistic Sensitivity Analysis

- A threshold analysis indicated that the baseline hospitalization rate would need to be as low as 0.76% for NMV/r to exceed an ICER of \$150,000 vs BSC
- Conversely, NMV/r becomes cost-saving, and therefore a dominant treatment strategy, at baseline hospitalization rates above 4.26%

CONCLUSIONS

- NMV/r was found to be cost-effective vs BSC from a US health sector perspective
- The results were robust to various sensitivity analyses, including using lower baseline hospitalization rates and NMV/r effectiveness estimates, which were key drivers of the model
- These findings support timely US adoption of NMV/r for the treatment of high-risk COVID-19 to maximize health outcomes

References

1.Paxlovid prescribing information. 2. Lewnard JA, et al. Lancet Infect Dis. 2023;S1473-3099(23)00118-4. 3. Briggs AH, et al. Value in Health. 2012;15(6):835-842. 4. Laboratory-Confirmed COVID-19-Associated Hospitalizations. Accessed March 2023. 5. Goswami H, et al Pharmacoeconomics. 2022;40(7):699-714. 6. Adjei S HK, et al. MMWR Morb Mortal Wkly Rep 2022;71:1182–1189. 7. Menni C, et al. Lancet. 2022; 399(10335):1618-1624. 8. Pfizer, data on file. 9. Janssen MF, et al. . Eur J Health Econ. Mar 2019;20(2):205-216. 10. Sheinson D, et al. Adv Ther. Apr 2021;38(4):1811-1831. 11. Red Book. Merative US LP. Accessed: January 2024. 12. Pike J, et al. Prev Chronic Dis 2023;20:220292.

Disclosures

Study funded by Pfizer Inc.

For more information, please contact: Tendai Mugwagwa, PhD Pfizer, Inc. London, UK Email: Tendai.Mugwagwa@pfizer.com