Patient-Reported Outcomes of Nirmatrelvir/Ritonavir Treatment for High-Risk, Nonhospitalized Adults With Symptomatic COVID-19

Ashley S. Cha-Silva,¹ Henriette Coetzer,² Kelly Gebo,³ Jinma Ren,⁴ Amie Scott,⁵ Joseph C. Cappelleri,⁶ Wajeeha Ansari,¹ Heidi Leister-Tebbe⁷

¹Global Biopharmaceuticals Group, Pfizer Inc, New York, NY, USA; ²Blue Health Intelligence® (BHI®), Chicago, IL, USA; ⁴Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, Collegeville, PA, USA; ¹Global Biometrics and Data Management, Pfizer Inc, P ⁵Global Real World Evidence, Pfizer Inc, New York, NY, USA; ⁶Global Biometrics and Data Management, Pfizer Inc, Groton, CT, USA; ⁷Pfizer Research and Development, Pfizer Inc, Collegeville, PA, USA

BACKGROUND AND OBJECTIVES

- Although >97% of US adults have antibodies against SARS-CoV-2 through vaccination and/or infection, new variants continue to evade the immune response, driving disease and mortality and straining global healthcare systems.1-3
- Beyond its serious effects on physical health, COVID-19 substantially impacts daily activities and quality of life for many patients.4-5
- Nirmatrelvir/ritonavir (NMV/r; Paxlovid, Pfizer Inc) is approved in the United States and >70 other countries worldwide for the treatment of mild-to-moderate COVID-19 in vaccinated and unvaccinated adults who are at high risk of progression to severe disease.^{6,7}
- NMV/r is recommended by the US National Institutes of Health and the World Health Organization as the first line of treatment for COVID-19 in this high-risk
- In the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) study, NMV/r demonstrated an 86% relative risk reduction vs placebo against COVID-19-related hospitalization or all-cause mortality in high-risk adults with mild-to-moderate COVID-19.7,10
- Patient-reported outcomes (PROs) were also collected in EPIC-HR to determine how NMV/r impacted patient assessment of their symptom burden, work productivity, daily activities, and overall health-related quality of life (HRQoL).
- Here, we report PROs from EPIC-HR using results from the Global Impression Questions (GIQ), Work Productivity and Activity Impairment (WPAI-COVID-19), and EuroQol Quality-of-Life 5-Dimension 5-Level Scale (EQ-5D-5L) questionnaires.

METHODS

- In EPIC-HR, nonhospitalized adults at high risk of progression to severe COVID-19 were randomized 1:1 within 5 days of symptom onset to receive either NMV/r or placebo twice daily for 5 days.
- Patients were asked to complete the GIQ at baseline and daily for 28 days using an electronic diary and to complete the WPAI-COVID-19 (adapted from the General Health WPAI)¹¹ and EQ-5D-5L¹² at specified visits through Week 24.
- PRO analyses included randomized patients who received ≥1 dose of study intervention and had ≥1 postbaseline visit through Day 28 (modified intent-to-treat 2 [mITT2] population).
- Rollout of WPAI-COVID-19 and EQ-5D-5L questionnaires occurred after study initiation, limiting response availability.
- The GIQ¹³ consisted of 3 questions regarding patients' return to usual health, return to usual activities, and COVID-19 symptom severity.
- The time to return to usual health or activities and time to resolution or alleviation of symptoms were calculated as the first event date minus the number of days from receipt of the first dose, plus 1 day.
- Sustained resolution of symptoms was defined as the first of 4 consecutive days with no reported overall symptoms.
- Sustained alleviation of symptoms was defined as the first of either 1) 4 consecutive days with mild or absent symptoms for symptoms reported as moderate or severe at baseline or 2) 4 consecutive days with absent symptoms for symptoms reported as mild at baseline.
- GIQ results were analyzed using the Kaplan-Meier method with a log-rank test and a Cox proportional hazard model to calculate hazard ratios (HRs) with 95% Cls.¹⁴
- In the Cox proportional hazard analysis, treatment group (NMV/r or placebo) and geographic region were used as independent variables and controlled covariates included symptom onset duration (≤3 or >3 days), COVID-19 monoclonal antibody treatment (yes or no), baseline SARS-CoV-2 serology status (positive or negative), and baseline viral load (<4 or ≥4 log₁₀ copies/mL).

RESULTS

Figure 1. CONSORT Diagram Detailing Enrollment and Randomization

Excluded from analysis (n=133)*

Discontinued treatment (n=85

Withdrawal by participant (r

No longer eligible (n=1)

Other (n=11)

Completed treatment (n=979)

mITT2[†] population (n=1053)

Placebo

29.2 (5.7)

227 (21.9) 224 (21.3) 451 (21.6)

1054 (50.4)

1484 (71.

1030 (49.3)

1035 (49.5)

Adverse event (n=45)

Assigned to receive

placebo (n=1064)

Patients who underwent randomization in EPIC-HR

*Data were excluded from 2 sites from the full analysis set due to data quality issues. †mITT2

Demographic and baseline clinical characteristics were similar between treatment

Table 1. Patient Demographic and Baseline Clinical Characteristics of

Nirmatrelvir/

29.0 (5.4)

population includes all patients who received ≥1 dose of the study intervention and had ≥1

Assigned to receive

nirmatrelvir/ritonavir (n=1049)

Discontinued treatment (n=63)

Withdrawal by participant (n

Adverse event (n=21)

No longer eligible (n=3)

Completed treatment (n=986)

mITT2[†] population (n=1038)

the mITT2 Population

postbaseline visit through Day 28.

groups (Table 1).

Characteristic

Not reported

United States

mean (SD), days

mean (SD), days

Positive

Unknown

Europe

BMI, mean (SD), kg/m²

Geographic region, n (%)

Duration since first diagnosis,

Duration since first symptom,

Number of risk factors of interest. n (%)

SARS-CoV-2 serology status, n (%)

Viral load, mean (SD), log₁₀ copies/

BMI=body mass index; mITT2=modified intent-to-treat 2; SD=standard deviation.

Race, n (%)

Age, median (range), years

Black or African American

American Indian or Alaska Native

- Out of 2246 randomized patients, 2091 were included in the mITT2 population Among patients who completed the GIQ on Day 28, the time to return to usual health and time to return to usual activities were significantly reduced for patients who received NMV/r compared with placebo (Figure 2, Figure 3). (NMV/r, n=1038; placebo, n=1053; **Figure 1**).
 - By Day 28, 81% of patients receiving NMV/r vs 76% of patients receiving placebo reported a return to usual health (Figure 2).
 - Differences between the 2 groups were first apparent on Day 4.
 - Patients treated with NMV/r had a significant 3-day reduction in median time to return to usual health (10 [95% CI, 10–11] days) compared with placebo (13 [95% CI, 12–14] days; HR, 1.27 [95% CI, 1.2–1.4]; P<0.0001).

- By Day 28, 88% of patients receiving NMV/r vs 83% of patients receiving placebo reported a return to usual activities (Figure 3).

- Patients treated with NMV/r had a significant 1-day reduction in median time to return to usual activities (11 [95% CI, 10–11]
- days) compared with placebo (12 [95% CI, 11–12] days; HR, 1.2 [95% CI, 1.1–1.4]; *P*<0.0001).

Figure 2. Percentage of Patients in Each Treatment Group in the mITT2 Population Reporting Return to Usual Health on Each Study Day Through Day 28 on the Global Impressions Questionnaire

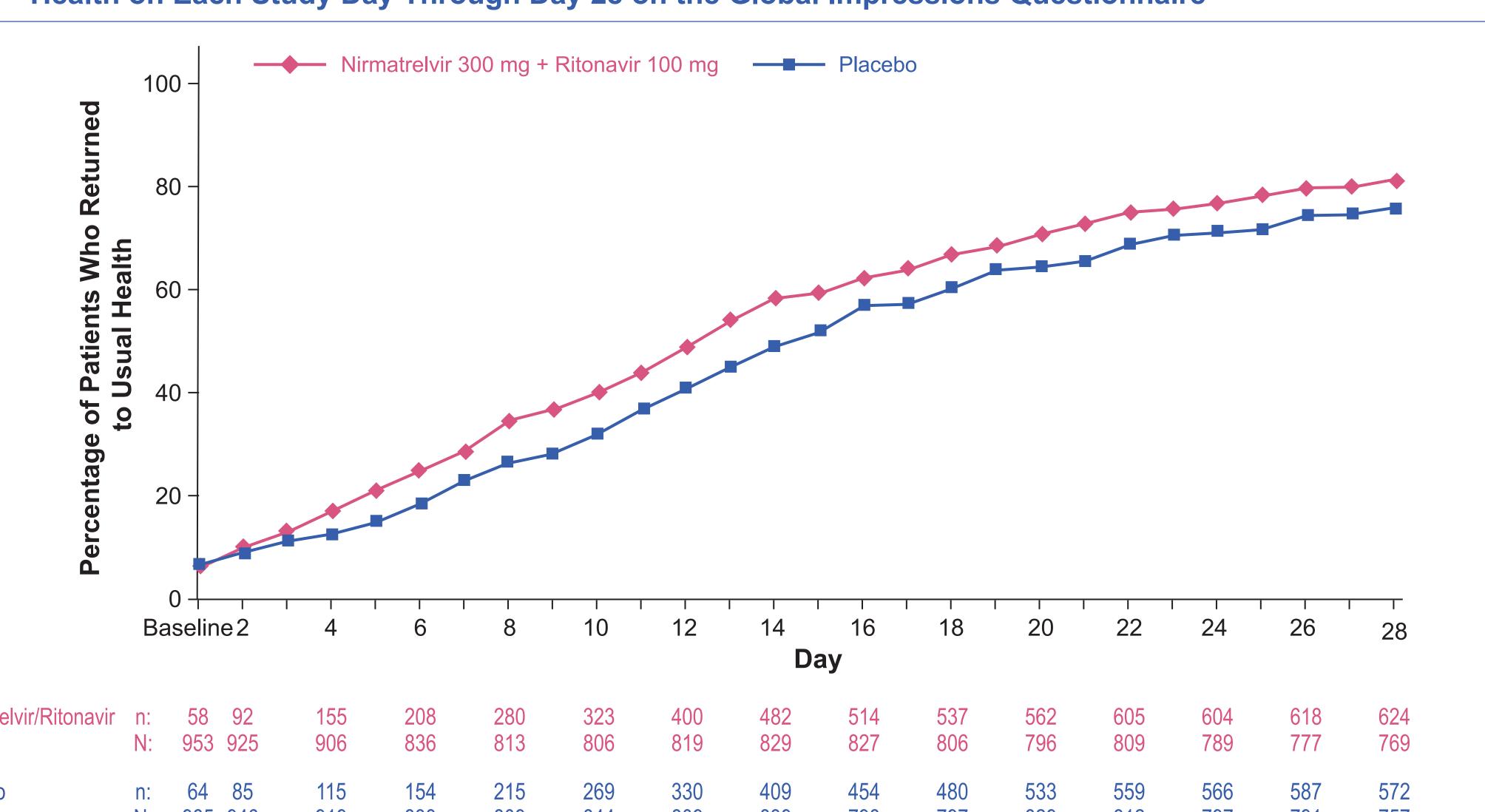
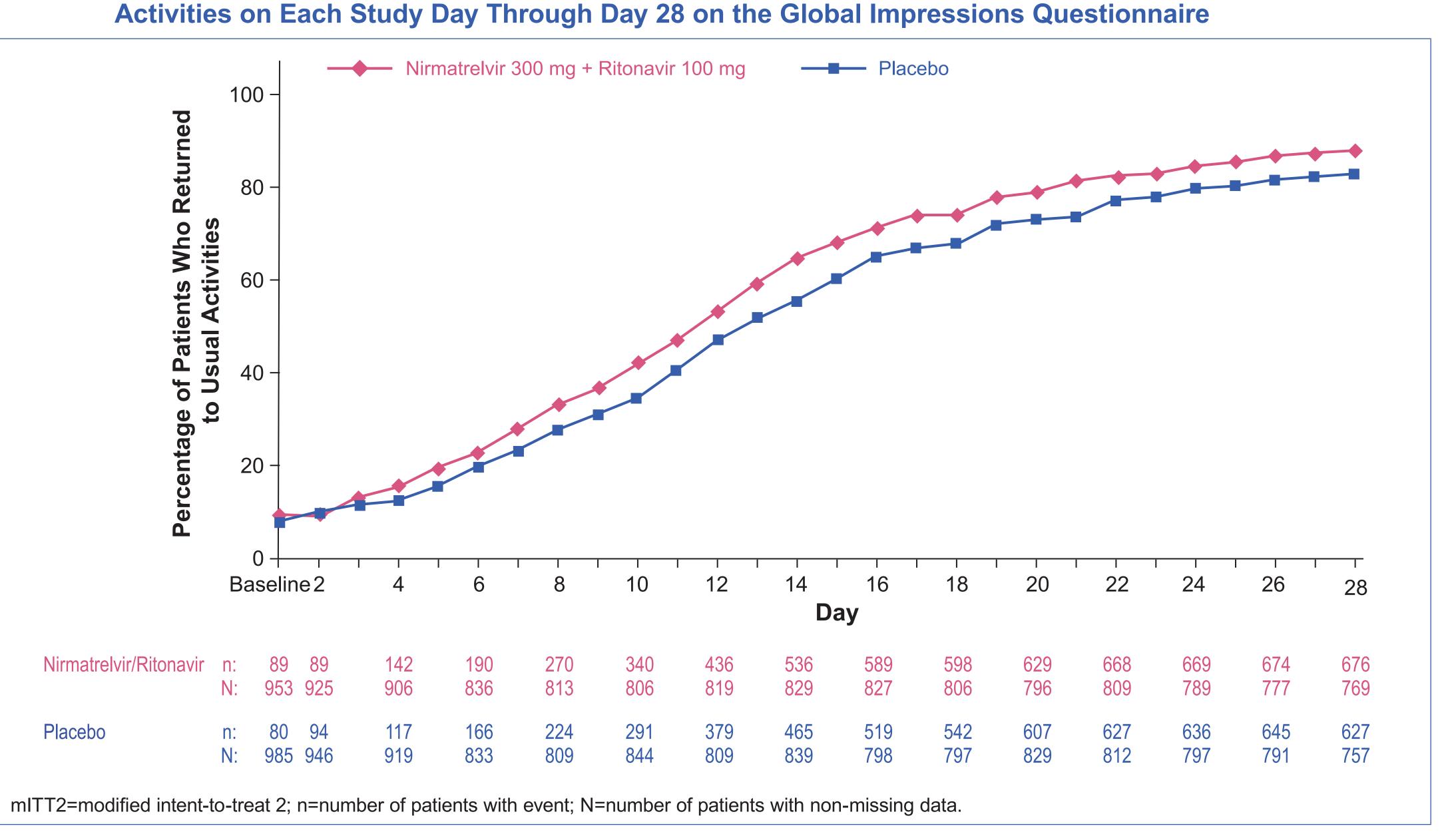
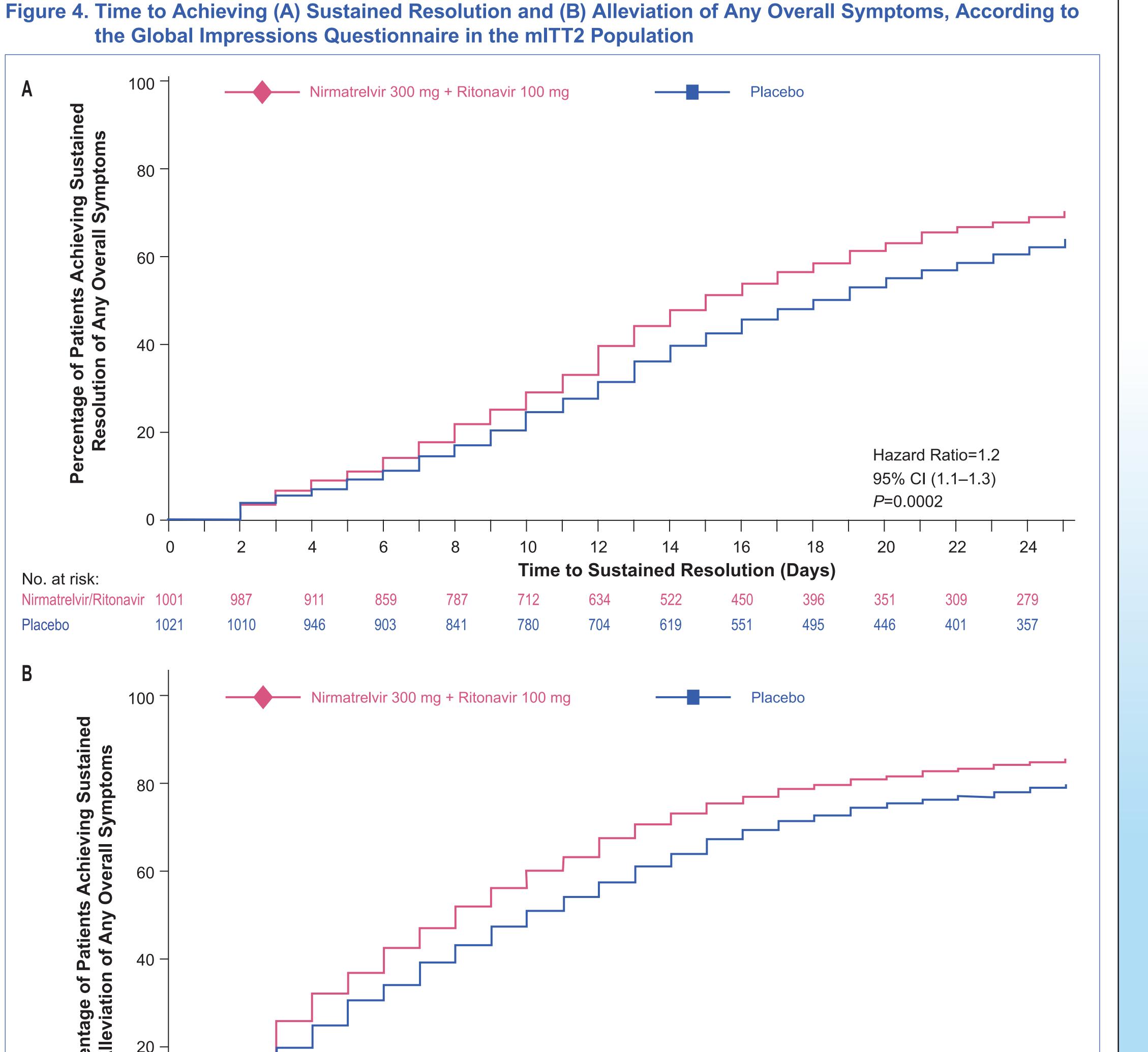




Figure 3. Percentage of Patients in Each Treatment Group in the mITT2 Population Reporting Return to Usual

mITT2=modified intent-to-treat 2; n=number of patients with event; N=number of patients with nonmissing data.

- Compared with patients receiving placebo, patients who received NMV/r reported significantly reduced time to achieving sustained symptom resolution (HR, 1.2; 95% CI, 1.1–1.3; *P*=0.0002; **Figure 4A**) and sustained symptom alleviation (HR, 1.2; 95% CI, 1.1–1.3; *P*<0.0001; **Figure 4B**).
 - Median time to sustained symptom resolution was 15 days (95% CI, 14-16 days) among patients who received NMV/r and 19 days (95% CI, 17-20 days) among patients who received placebo.
- Median time to sustained symptom alleviation was 8 days (95% CI, 7-9 days) among patients who received NMV/r and 10 days (95% CI, 9-11 days) among patients who received placebo.
- By Day 3, 1.4% of patients receiving NMV/r and 3.1% of patients receiving placebo reported severe overall COVID-19 symptoms; except for Day 7, these differences persisted through Day 12.
- Because of the operational challenges in the rollout of the electronic diary for PROs and a low number of baseline responses to both the WPAI-COVID-19 (n=53) and EQ-5D-5L (n=51), no meaningful conclusions could be drawn regarding the impact of NMV/r treatment on work productivity, activity impairment, or overall HRQoL.

Time to Sustained Alleviation (Days)

CONCLUSIONS

- In EPIC-HR, patients who received NMV/r reported quicker return to usual health and activities, quicker resolution and alleviation of symptoms, and reduced overall COVID-19 symptom severity compared with those who received placebo.
- Consistent with the previously demonstrated efficacy of NMV/r in reducing hospitalization and death among COVID-19 patients at high risk of progression to severe disease, 10,15 results here confirm the positive impact of NMV/r on patient experiences after receiving treatment for COVID-19.

References

- Yamana TK, et al. PLoS One. 2023;18(4):e0275699 2. Satapathy P, et al. New Microbes New Infect. 2024;57:101225. 3. World Health Organization. COVID-19 Epidemiological Update.
- 4. Amdal CD, et al. Qual Life Res. 2021;30(12):3367-3381.

5. Judy J, et al. *J Med Econ*. 2024;27(1):941-951.

- 6. Pfizer Inc. Pfizer's PAXLOVID Receives FDA Approval for Adult Patients at High Risk of Progression to
- . Pfizer Inc. Highlights of Prescribing Information: PAXLOVID.
- 8. National Institutes of Health. Final Coronavirus Disease (COVID-19) Treatment Guidelines (February 29, 2024).
- 9. World Health Organization. Therapeutics and COVID-19. November 10, 2023. 10. Hammond J, et al. *N Engl J Med*. 2022;386(15):1397-1408.
- 11. Reilly MC, et al. *Pharmacoeconomics*. 1993;4(5):353-365.
- 12. EuroQol Research Foundation. EQ-5D-5L User Guide. 2019.
- 13. US Food and Drug Administration. Assessing COVID-19-Related Symptoms in Outpatient Adult and Adolescent Subjects in Clinical Trials of Drugs and Biological Products for COVID-19 Prevention or
- Treatment: Guidance for Industry. 14. Rosner B. Fundamentals of Biostatistics. 8th ed. Boston, MA: Cengage Learning; 2015.
- 15. Cha-Silva AS, et al. A systematic literature review evaluating real-world use of nirmatrelvir-ritonavir for the

prevention of COVID-19-related hospitalization and death. Presented at: IDWeek, 2023; Boston, MA, USA. Acknowledgments

These studies were sponsored by Pfizer Inc. Medical writing support was provided by Anna Stern, PhD, of ICON (Blue Bell, PA) and was funded by Pfizer. Authors would like to thank Paul Cislo for feedback and data oversight.

Disclosures

Hazard Ratio=1.2

95% CI (1.1–1.3)

P<0.0001

are employees of Pfizer Inc and may hold stock or stock options. Henriette Coetzer and Kelly Gebo are unpaid advisors to Pfizer and have no competing interests to report.

mITT2=modified intent-to-treat 2.