A Qualitative Study of Artificial Intelligence-Based Tools to Raise Suspicion for ATTR Cardiomyopathy

Baljash Cheema¹, Lori M Baylor², Rahul Bhambri², Abbas Ebrahim², Faraz S Ahmad¹

¹Northwestern University Feinberg School of Medicine, Chicago, IL, USA; ²Pfizer Inc, New York, NY, USA

INTRODUCTION

- Accurate diagnosis and appropriate treatment of rare cardiovascular (CV) diseases such as transthyretin amyloid cardiomyopathy (ATTR-CM) are often delayed until late in the disease course, potentially worsening patient outcomes.
- Artificial intelligence (Al)-enabled screening tools have been developed to help clinicians distinguish ATTR-CM from more common CV diseases with similar clinical
- Despite the availability of these tools and their potential to improve patient care, they have not yet been adopted on a broad scale.1
- We used qualitative research methods to identify and understand the challenges and barriers related to the use of Al-enabled screening tools compared with standard risk scores.

METHODS

- Researchers (Hawk Partners, Fort Washington, PA) conducted 1:1 interviews with cardiologists and administrators of electronic health records/information technology
- Format: a semi-structured interview guide used for interviews via telephone and live web platform.
- Duration: 60 minutes.
- Timing: June–July 2023.
- Eligible cardiologists and EHR/IT administrators satisfied the criteria listed in Table 1.

Table 1: Participant eligibility criteria		
Cardiologists	EHR/IT administrators	
Board certified in cardiology	 Employed in current role for ≥1 year 	
• In practice for 3–32 years	 Involved in EHR management and maintenance, 	
• Spent ≥50% of time on	including ≥3 of the following:	
patient care	 Transitioning to a new EHR system; monitoring EHR 	
 Provided care for ≥50 patients with heart failure in a typical month 	updates; implementing programmatic changes to EH	
	 Integrating EHR with other applications or patient management tools 	
 Treated ≥1 patient with ATTR-CM in the past year 	 Vetting EHR applications and use cases 	
	 Analyzing clinical data for research, process 	
Influential within	improvement, and reporting	
their organizations, as demonstrated by publications, committee membership, tenure, etc	 Designing health information systems to comply with medical, legal, and ethical standards 	
	 Running queries on EHR data to support improved clinical outcomes 	
 Not employed as a consultant to a pharmaceutical company 	 Implementing guideline-directed processes or pathways in support of patient care gaps 	

Not affiliated with a pharmaceutical company or

federal or local government agency

ATTR-CM=transthyretin amyloid cardiomyopathy; EHR=electronic health records; IT=information technology

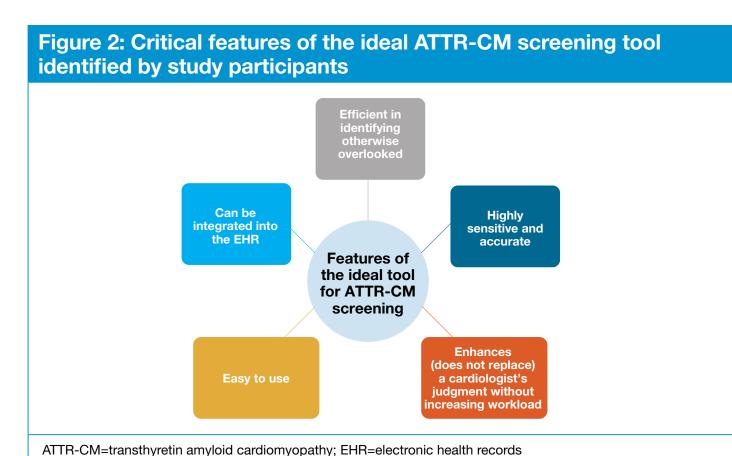
healthcare manufacturer, and not employed by US

- Participants were asked to review and assess the following 3 existing ATTR-CM screening approaches:
- (1) Deep-learning-based automated electrocardiograph interpretation.²
- (2) Machine-learning-based interpretation of International Classification of Diseases, Tenth Revision (ICD-10) codes.³
- (3) Simple risk score derived from linear regression with known ATTR-CM predictors.4
- The order of exposure to these approaches was rotated across the interviews.
- Interviews were audio-recorded, transcribed, de-identified, and coded. Content was reviewed and analyzed for major patterns and themes using grounded theory.

RESULTS

• Characteristics of the cardiologists (n=20) and EHR/IT administrators (n=15) who were interviewed are summarized in **Table 2**.

Table 2: Participant characteristics		
Characteristic	Cardiologist n=20	EHR/IT administrators n=15
Setting, n (%)		
Community	5 (25)	8 (54)
Academic	12 (60)	5 (33)
Standalone private practice	2 (10)	2 (13)
Specialized hospital/center of excellence	1 (5)	0
Practice/role		
Duration of employment, mean (range), y	12.3 (3–32)	11.5 (2–23)
Practice patient population		
Patients with heart failure, mean (range), n	192 (54–656)	N/A
Patients treated for ATTR-CM in past year, mean (range), n	37 (3–150)	N/A
Current EHR system, n (%)		
Epic	17 (85)	7 (47)
Cerner	-	2 (13)
Athena Health	2 (10)	-
Meditech	1 (5)	-
SOAPware	-	1 (7)
Quantum	-	1 (7)
Multiple EHR across network	_	4 (26)


- Participants shared their assessments of the strengths/opportunities and challenges/concerns of each ATTR-CM screening approach (Figure 1A-C).
- Participants also identified 5 critical features of the "ideal" ATTR-CM screening tool (Figure 2).

ATTR-CM=transthyretin amyloid cardiomyopathy; EHR=electronic health records; IT=information technology; N/A=not applicable

Figure 1: Summary of participant feedback on ATTR-CM screening approaches A. Deep-learning-based automated echo interpretation **Cardiologists EHR/IT Administrators** Perceived strengths and opportunities (eg, due to need for transmit imaging data **Perceived** Interfacing with both echo concerns and testing capacity Keeping up to date with new **Cost ineffective B.** Machine-learning-based interpretation of ICD-10 codes **Cardiologists EHR/IT Administrators** Low processing power Easy integration with EHR strengths and Easy to maintain can screen many patient at once for follow-up C. Simple risk score **EHR/IT Administrators** Both **Cardiologists** Easiest to implement Low cost **Perceived** strengths and Flexible to use with or High level of familiarity without EHR integration opportunities Challenging to automate if data not readily accessible from EHR rformance may be limited by simplicity of the model Perceived concerns and

ATTR-CM=transthyretin amyloid cardiomyopathy; echo=echocardiogram; EHR=electronic health records; ICD-10=International Classification

of Diseases, Tenth Revision; IT=information technology

CONCLUSIONS

- Several important features were identified that warrant consideration when designing or selecting Al-based ATTR-CM screening tools to help facilitate broader use.
- These lessons may also apply to disease states beyond ATTR-CM and reflect the judgments, concerns, and hopes for the use of AI in clinical medicine reported by clinicians and EHR/IT administrators.

REFERENCES

- Goldfarb A, Teodoridis F. Why is Al adoption in health care lagging? https://www.brookings. edu/articles/why-is-ai-adoption-in-health-care-lagging (accessed February 22, 2024).
- **2.** Zhang J, et al. Circulation 2018;138:1623-35.
- 3. García-García E, et al. Int J Environ Res Public Health 2021;18:908.
- 4. Davies DR, et al. JAMA Cardiol 2022;7:1036-44.

DISCLOSURES

BC: Consultant: Caption Health, Viz.ai; advisory board: Novo Nordisk; advisor (equity interest): Healthspan, Zoe Biosciences. LMB, RB, and AE: Employees of Pfizer and hold stock/stock options. FSA: Consultant: Pfizer.

ACKNOWLEDGMENTS

This study was supported by Pfizer. Editorial assistance was provided by Donna McGuire of Engage Scientific Solutions and was funded by Pfizer.

Please scan this QR code with your smartphone app to view or obtain a copy of this poster. If you don't have a smartphone, access the poster via the internet at: https://scientificpubs.congressposter.com/p/wr047lz3mf6eku5n

or in a setting affiliated with

Kaiser/Kaiser Permanente