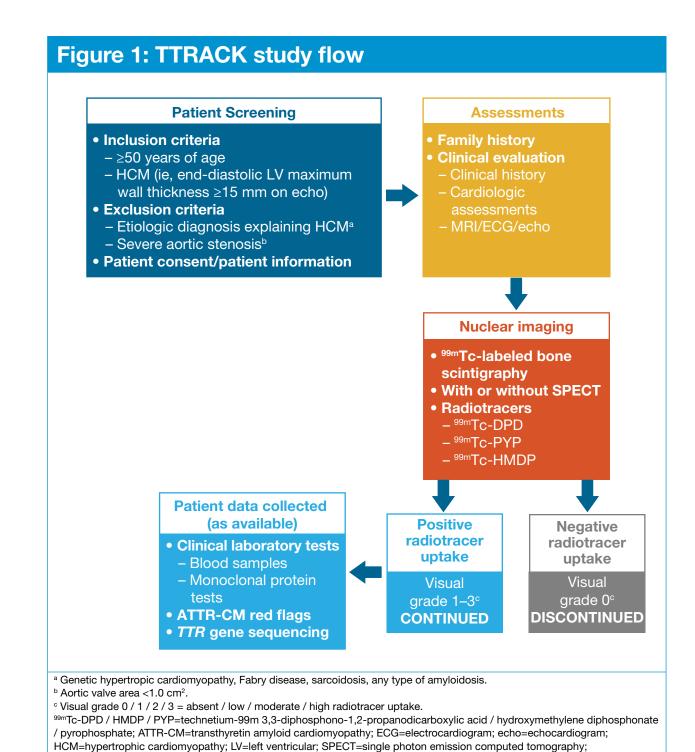
Clinical Red Flags Associated With Transthyretin Amyloid Cardiomyopathy in Patients With Unexplained Hypertrophic Cardiomyopathy: Results of the TTRACK study

Thibaud Damy¹, Pablo Garcia-Pavia², Nicolas Piriou³, Francesco Cappelli⁴, Roberto Barriales-Villa⁵, Carmen Munteanu⁶, Catherine Bahus⁶, Denis Keohane⁶, Pablo Mallaina⁶, Perry Elliott⁷


¹Assistance Publique-Hôpitaux de Paris, Henri Mondor University Hospital, Créteil, France; ²Hospital University Hospital, Nantes University Hospital, Nantes, France; ⁴Careggi University Hospital, Florence, Italy; ⁵Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; ⁶Pfizer Inc, New York, NY, USA; ⁷University College London, London, UK

BACKGROUND

- Transthyretin amyloid cardiomyopathy (ATTR-CM) is a fatal, progressive disease that:
- has a broad clinical spectrum and
- mimics common cardiac conditions, eg, hypertrophic cardiomyopathy (HCM).^{1,2}
- If ATTR-CM remains untreated, median survival after diagnosis is:
- ~2.6 years in variant disease³ and
- ~3.6 years in wild-type disease.⁴
- Delayed diagnosis is common in ATTR-CM and can adversely affect cardiac function and quality of life.^{5,6}
- ~40% of patients with the disease have ≥4-year delay after cardiac symptoms present.³
- Many patients visit between 3 and 5 clinicians before they receive an accurate diagnosis.⁷
- Overall ATTR-CM awareness has increased, along with the use of cardiac scintigraphy and monoclonal protein tests for non-invasive diagnosis; however, better recognition of ATTR-CM clinical clues ("red flags") is needed to help identify patients who may benefit from further diagnostic testing.⁵
- Early diagnosis and timely disease-modifying treatment may help improve clinical outcomes.⁸
- The TTRACK study (NCT03842163) was conducted to improve our knowledge of ATTR-CM in older patients with unexplained HCM.
- In the current analysis, we examined the association between diagnostic red flags and ATTR-CM in the TTRACK population.

METHODS

- Study design: Noninterventional, cross-sectional, epidemiologic study in older patients with unexplained HCM based on 2014 ESC guidelines⁹ (Figure 1).
- Study sites: 20 centers in 11 countries (Australia, Austria, France, Italy, Portugal, Romania, Slovakia, Slovenia, South Korea, Spain, and UK).
- Final analysis date range: July 2018–October 2022.
- Scintigraphy assessment: Cardiac uptake of bisphosphonate radiotracers (**Table 1**; **Figure 1**).

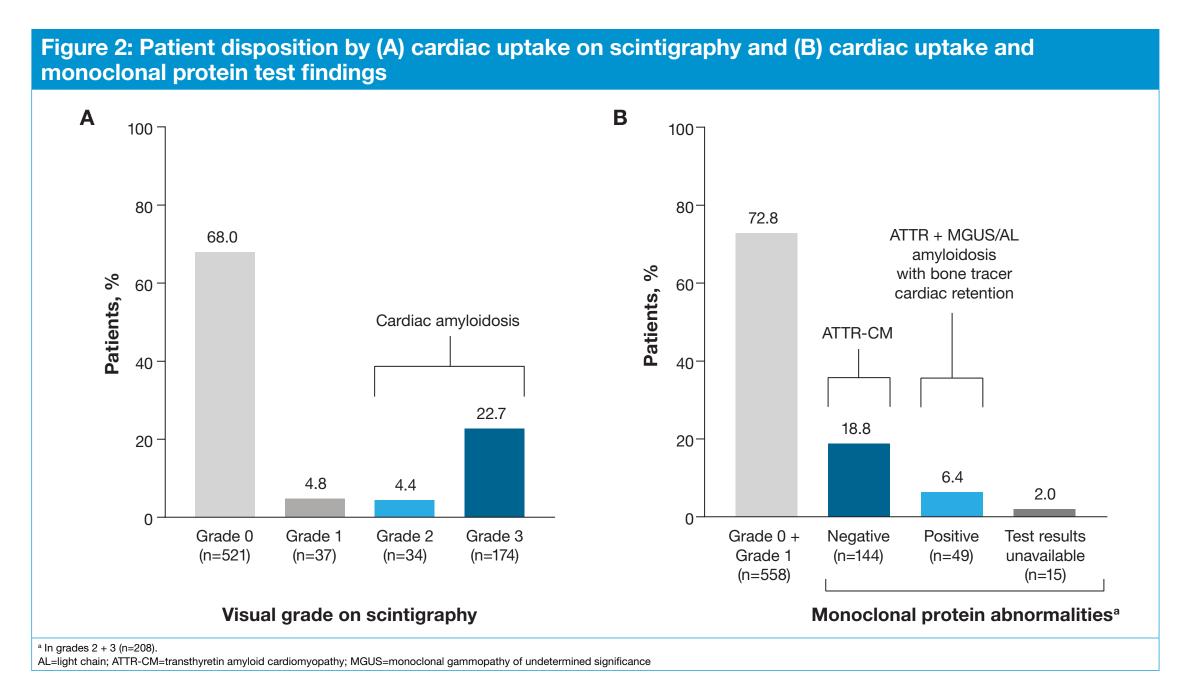



Table 1: Visual grading of cardiac uptake on scintigraphy ¹⁰	
Visual grade	Level of cardiac uptake
0	No cardiac uptake
1	Mild: uptake less than bone
2	Moderate: uptake equal to bone
3	High: uptake greater than bone

RESULTS

Patient Disposition

- 766 patients with scintigraphy data were eligible:
- No cardiac uptake: n=521/766 (68.0%).
- Cardiac uptake: n=245/766 (32.0%).
- 208/766 (27.2%) patients had moderate or high uptake and were classified as having cardiac amyloidosis (Figure 2A).
- 144/766 (18.8%) patients had moderate or high cardiac uptake and negative monoclonal protein findings were classified as having ATTR-CM (Figure 2B).

ATTR-CM Predictors (Univariate Regression)

- The strongest cardiac predictors were (Figure 3A):
- Atrial fibrillation, present vs absent: odds ratio (OR) 3.4 (95% CI: 2.2-5.2).
- Atrial fibrillation, history vs no history: OR 1.8 (95% CI: 1.1–3.2).
- Severe heart failure, New York Heart Association functional class III/IV: OR 1.9 (95% CI: 1.2–2.9).
- The strongest non-cardiac predictors were (Figure 3A):
- Carpal tunnel syndrome: OR 26.7 (95% CI: 16.1–44.1).
- Male sex: OR 3.0 (95% CI: 1.8–4.8).

ATTR-CM Predictors (Multivariate Regression)

- The strongest cardiac predictor was (Figure 3B):
- Left ventricular septal wall thickness: OR 1.8 (95% CI: 1.1-2.9).
- The strongest non-cardiac predictors were (**Figure 3B**):
- Carpal tunnel syndrome: OR 54.3 (95% CI: 25.2–117.1).
- Male sex: OR 7.9 (95% CI: 3.6-17.5).
- Age: OR 1.9 (95% CI: 1.6–2.2)

CONCLUSIONS

- In the TTRACK study, nearly 19% (144/766) of patients aged ≥50 years with unexplained HCM (maximal end-diastolic left ventricular wall thickness ≥15 mm on echocardiogram)¹⁰ had scintigraphy and monoclonal protein findings indicative of ATTR-CM.
- Carpal tunnel syndrome, male sex, advanced age, and left ventricular wall thickness were the strongest predictors of ATTR-CM on multivariate regression analysis.
- Additional information about the characteristics of ATTR-CM in older patients with unexplained HCM is needed to improve understanding and facilitate detection of this debilitating but treatable disease.

REFERENCES

1. Garcia-Pavia P, et al. Eur J Heart Fail 2021;23:895-905. 2. Damy T, et al Eur Heart J 2016;37:1826-34. 3. Lane T, et al. Circulation 2019;140:16-26. 4. Grogan M, et al. Am Coll Cardiol 2016;68:1014-20. 5. Kittleson MM, et al. J Am Coll Cardiol 2023;81:1076-126. 6. Rozenbaum MH, et al. Cardiol Ther 2021;10:141-59. 7. Lousada I, et al. J Card Fail 2019;25(8 suppl):S69. 8. Elliott P, et al. Circ Heart Fail 2022;15:e008193. 9. Elliott PM, et al. Eur Heart J 2014;35:2733-79. 10. Perugini E, et al. J Am Coll Cardiol 2005; 46:1076-84.

DISCLOSURES

TD: Alnylam, GlaxoSmithKline, Pfizer, and Prothena. **PGP:** Alexion, Alnylam, AstraZeneca, ATTRalus, Bridgebio, General Electric, Intellia, Ionis, Neurimmune, Novo Nordisk, and Pfizer. **NP:** Alnylam and Pfizer. **FC:** Akcea, Alnylam, Novo Nordisk, and Pfizer. **RBV:** Consultancy fees from Alnylam, Amicus, Bristol Myers Squibb, Chiesi, Cytokinetics, Pfizer, and Sanofi. **CM, CB, DK and PM:** Employees of Pfizer and have stock/stock options. **PE:** Alnylam and Pfizer.

ACKNOWLEDGMENTS

This study was supported by Pfizer. Editorial assistance was provided by Donna McGuire of Engage Scientific Solutions and was funded by Pfizer.

Electronic Poster

Please scan this QR code with your smartphone app to view a copy of this poster. If you don't have a smartphone, access the poster via the internet at:

https://scientificpubs.congressposter.com/p/3bd1nwq2o5v9r3fk

