Real-world analysis of biomarker testing and use of targeted therapies in metastatic non-small cell lung cancer (mNSCLC) in the US

Michael J Dennis¹, Devin Abrahami², Maria Cecilia Vieira², Darrin Benjumea³, Marley Boyd³, Anran Shao³, Kirsten Duncan², John Kelton², Sandip Pravin Patel⁴

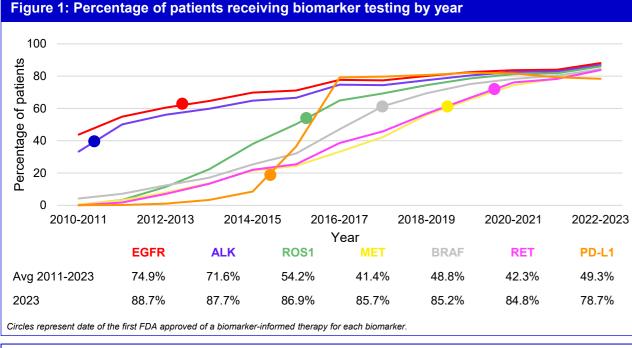
Dana Farber Cancer Institute, Boston, MA, USA; ²Pfizer Inc., New York City, NY, USA; ³Genesis Research Group, Hoboken, NJ, USA; ⁴University of California San Diego, La Jolla, CA, USA

Objective

Poster #2552

 To investigate real-world use of biomarker testing, testing characteristics, and associated use of biomarker-informed targeted therapies for EGFR, ALK, ROS1, MET, BRAF, RET, and PD-L1 mutations in US patients diagnosed with metastatic non-small cell lung cancer (mNSCLC).

Background


- Between 1998 and 2022, over 40% of new oncology drugs approved by the US FDA were precision therapies.[1]
- In mNSCLC, detecting biomarkers for targeted therapies (EGFR, ALK, ROS1, BRAF V600E variant, MET exon 14 skipping variant, RET and PD-L1) has become essential for adequate clinical care.[2]

Methods

Bold represents first FDA approved targeted therapy

- Adults ≥18 years old with stage IV mNSCLC from the nationwide Flatiron Health electronic health record-derived de-identified database (01/2011 – 04/2023).
- Biomarker characteristics assessed included proportion of patients receiving biomarker tests, timing
 of test, characteristics of patients, test type (single, multiple or next-generation sequencing [NSG])
 and sample type (blood or tissue).
- Proportion of patients receiving guideline recommended, biomarker-informed targeted therapies was assessed from study year of first FDA approval of targeted therapy (**Table 1**).

Table 1: Biomarker-informed therapy definitions Date of First FDA Biomarker Therapies Included **Approval** afatinib, gefitinib, erlotinib, osimertinib, dacomitinib, mobocertinib, **EGFR** July 2013 amivantamab-vmiw **ALK** crizotinib, ceritinib, alectinib, brigatinib, lorlatinib August 2011 ROS1 crizotinib, ceritinib, entrectinib March 2016 cabmatinib May 2020 **BRAF** dabrafenib+trametinib July 2015 pralsetinib, selpercatinib September 2020 pembrolizumab, cemiplimab, atezolizumab, nivolumab+ipilimumab, PD-L1 October 2015 tremelimumab+durvalumab

References: [1] Suehnholz et al. Cancer Discov, 2024. [2] Pennell et al. Am Soc Clin Oncol Educ Book, 2019. **Acknowledgements:** This study was sponsored by Pfizer, Inc. Table 2: Patient characteristics at metastatic diagnosis among all patients and patients who received ≥1 biomarker test

Characteristics	All patients (N=42,037)	Tested patients (N=34,510)
Age, years Mean (SD)	67.6 (10.4)	67.4 (10.5)
Sex, % Male Female	51.1 48.9	49.4 50.6
Race, % White Black or African American Asian Hispanic / Latino Other Race Unknown	66.7 9.5 3.2 <0.1 9.5 10.9	66.8 9.4 3.6 <0.1 9.6 10.5
Practice Type, % Academic Community Unknown	20.3 77.8 1.8	20.2 77.7 2.1
Insurance Type, % Commercial Medicaid Medicare Other / Unknown	31.7 1.9 28.3 38.1	33.6 1.8 28.2 36.4
Smoking Status, % History of smoking No history of smoking Unknown	83.1 16.1 0.8	81.7 17.9 0.4
Histology, % Squamous Non-squamous Not otherwise specified	19.0 76.2 4.8	14.2 81.7 4.1

Results

- In 42,037 patients with mNSCLC, 34,510 received ≥1 biomarker test, with proportions varying by biomarker by year (Figure 1).
 - Testing rates increased from 2011 through 2023 for each biomarker, with the highest rates in 2023 (Figure 1).
- Patients were on average 67.6 years old, evenly split between male and females, with the majority (83.1%) having a history of smoking and non-squamous histology (76.2%) (Table 2).
- Median (Q1, Q3) time from mNSCLC diagnosis to first biomarker result was 21 (12, 37) days.
- Tissue was the more common sample type for biomarker testing, although sampling by blood increased in recent years and varied by biomarker (Figure 2a).
 - On average, across the entire time period, tissue sampling was the most common form of biomarker testing for the PD-L1 biomarker (98.5%) and was least common for the RET biomarker (60.4%); EGFR: 76.4%, ALK: 73.9%, ROS1: 67.0%, MET: 63.9%, BRAF: 61.0%.
- Multiple testing methods were more common in ALK and PD-L1 (48.1% and 50.3%, respectively) and NGS was more common in the other biomarkers (EGFR: 57.1%, ROS1: 54.0%, MET: 74.1%, BRAF: 77.7%, and RET: 70.7%).
 - NGS testing frequency increased by year (Figure 2b).
- Single biomarker tests were common for PD-L1 (49.7%).

 Receipt of biomarker-informed therapies varied by biomarker, in order of increasing frequency: RET+ (23.0%), MET+ (34.0%), BRAF+ (42.7%), PDL1+ (56.3%), ROS1+ (59.8%), EGFR+ (70.6%), and ALK+ (89.0%) and generally increased in recent years (Figure 3).

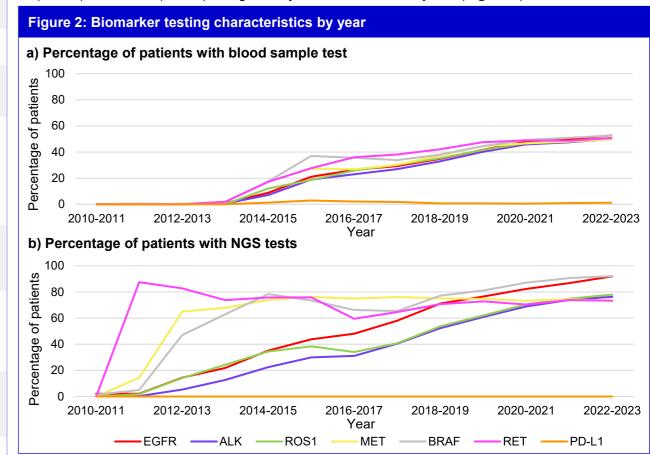
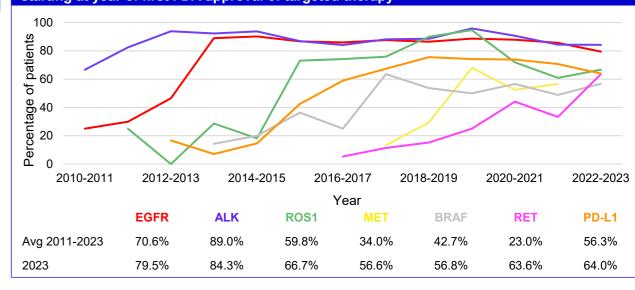



Figure 3: Percentage of patients receiving biomarker-informed therapy in any line by year, starting at year of first FDA approval of targeted therapy

Conclusions

- Current real-world increasing biomarker testing rates and use of biomarker-informed therapies may be in response to clinical guideline recommendations.
- · Despite increased testing, use of biomarker-informed therapy remains low for some biomarkers.
- Further follow through from implementation of robust biomarker testing to use of appropriate therapies is needed to lead to better patient outcomes.

Disclosures: MJD receives honoraria from MJH Life Sciences. DA, MCV, KD, and JK are employees of Pfizer, Inc. and may have share/share options. DB, MB, and AS are employees of Genesis Research, LLC. which received funding for their involvement in this study. SPP is a scientific advisor for Amgen, AstraZeneca, BeiGene, Bristol-Myers Squibb, Certis, Eli Lilly, Jazz, Genentech, Illumina, Merck, Pfizer, Signatera, Tempus and receives research funding from Amgen, AstraZeneca/MedImmune, A2bio, Bristol-Myers Squibb, Eli Lilly, Fate Therapeutics, Gilead, Iovance, Merck, Pfizer, Roche/Genentech.