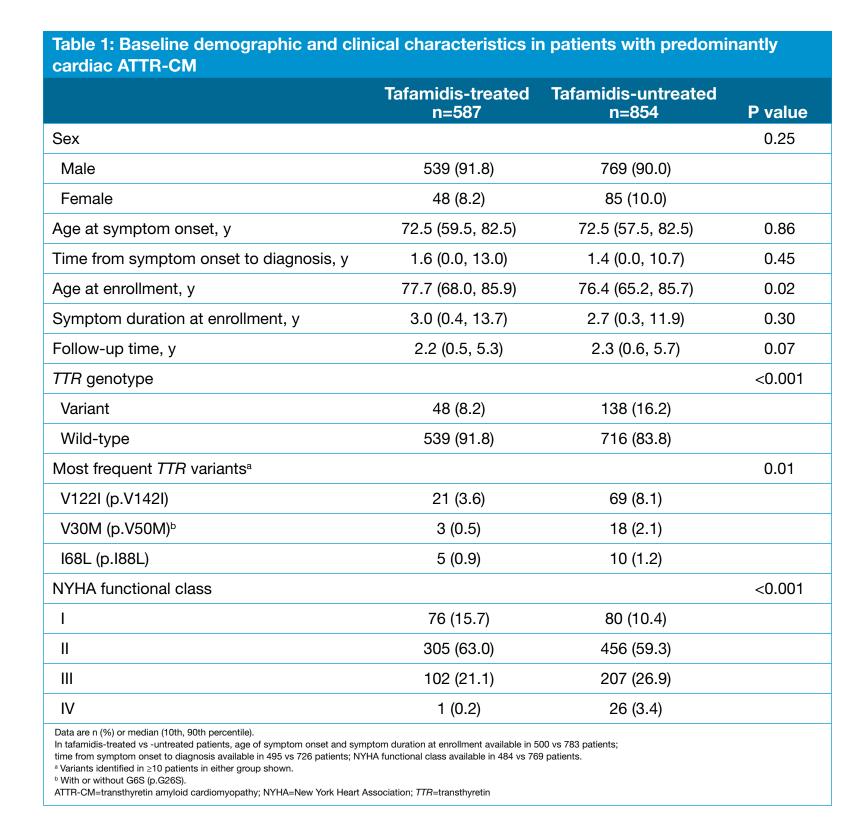
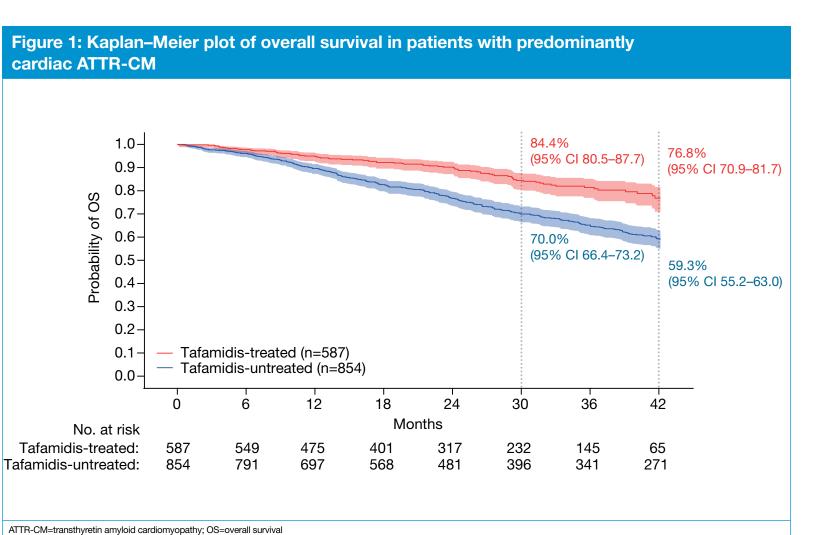
Survival in a Real-World Cohort of Patients With Transthyretin Amyloid Cardiomyopathy Treated With Tafamidis: An Analysis From the Transthyretin Amyloidosis Outcomes Survey

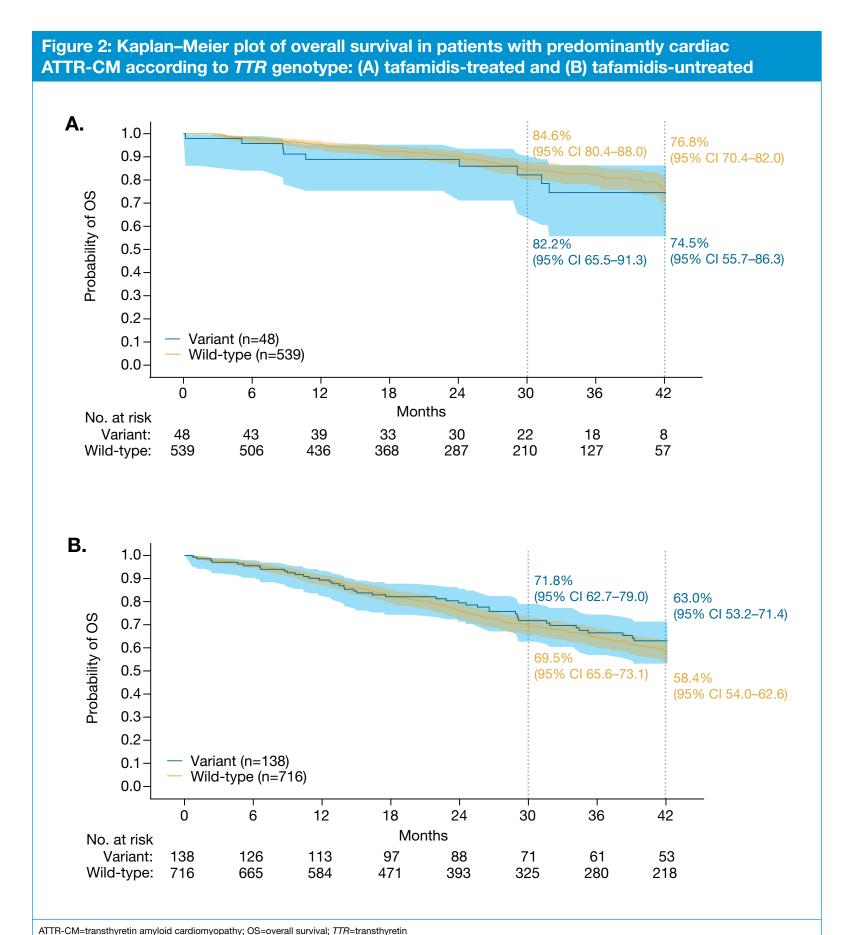
Pablo Garcia-Pavia¹⁻³, Arnt V Kristen⁴, Brian Drachman⁵, Martin Carlsson⁶, Leslie Amass⁶, Franca Stedile Angeli⁶, Mathew S Maurer⁷

¹Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; ²Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain; ³Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; ⁴Medical University of Heidelberg, Heidelberg, Germany; ⁵University of Pennsylvania Health System, Philadelphia, PA, USA; ⁶Pfizer Inc, New York, NY, USA; ⁷Columbia University College of Physicians and Surgeons, New York, NY, USA

INTRODUCTION


- Transthyretin amyloid cardiomyopathy (ATTR-CM) is caused by the accumulation of misfolded transthyretin (TTR) amyloid fibrils in the extracellular matrix of the heart, leading to progressive heart failure, arrhythmias, and conduction system disease.
- Tafamidis, a selective TTR stabilizer, is the first disease-modifying therapy for the treatment of patients with ATTR-CM and has regulatory approval in over 50 countries worldwide.
- The approval was based on positive findings from the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT), a phase 3 study (NCT01994889) conducted from 2013 to 2018 that investigated the efficacy and safety of tafamidis in patients with wild-type (ATTRwt-CM) or hereditary (ATTRv-CM) ATTR-CM.²
- The Transthyretin Amyloidosis Outcomes Survey (THAOS) was the largest global, longitudinal, observational study (NCT00628745) of patients with ATTR amyloidosis, including ATTR-CM and transthyretin amyloid polyneuropathy, and asymptomatic carriers of pathogenic TTR variants.³
- This analysis from THAOS examines real-world survival in a tafamidis-treated and -untreated ATTR-CM population.


METHODS


- Patients from THAOS with a predominantly cardiac phenotype who received any dose of tafamidis at any time during THAOS (tafamidis-treated) or never received tafamidis during THAOS (tafamidisuntreated) were included.
- Survival was analyzed in tafamidis-treated and -untreated patients using the Kaplan-Meier method; sensitivity analyses examined survival in patients with a wild-type or variant TTR genotype and in patients enrolled in THAOS before and after 2019.
- Safety data were collected prospectively from tafamidis initiation or enrollment (whichever was later) to the end of the observation period of the study, which must have included ≥28 days after the last administration of tafamidis.
- Results are based on the completed THAOS dataset (data cutoff date: July 24, 2023).

RESULTS

- Of 6718 patients enrolled in THAOS, 1441 patients (tafamidis-treated, n=587; tafamidis-untreated, n=854) from 18 countries had a predominantly cardiac phenotype and were included in this analysis.
- In tafamidis-treated and -untreated patients, respectively, 8.2% and 16.2% had a variant TTR genotype; the most common TTR variant was V122I (p.V142I), which was identified in 3.6% and 8.1% of patients (**Table 1**).
- In the respective groups, 21.1% and 26.9% were in New York Heart Association functional
- In the tafamidis-treated group, 77.5% of patients received tafamidis meglumine 80 mg/free acid 61 mg throughout the study; 8.9% received tafamidis meglumine 20 mg throughout the study; 12.4% initially received tafamidis meglumine 20 mg then switched to tafamidis meglumine 80 mg/free acid 61 mg; and 1.2% received a different dose.
- Median (10th, 90th percentile) treatment duration was 2.0 (0.6, 3.5) years.
- Median follow-up was 2.2 years for tafamidis-treated patients and 2.3 years for tafamidis-untreated patients (**Table 1**)
- Survival rates at 30 and 42 months, respectively, were 84.4% and 76.8% in tafamidis-treated patients, and 70.0% and 59.3% in tafamidis-untreated patients (**Figure 1**).
- Survival rates did not differ numerically between patients with ATTRwt-CM and ATTRv-CM among tafamidis-treated (Figure 2A) and tafamidis-untreated (Figure 2B) patients, although the number of patients with ATTRv-CM was small, especially past Month 12.
- In patients enrolled in THAOS in 2019 or later, survival rates at 30 and 42 months, respectively, were 87.3% and 82.8% in tafamidis-treated patients, and 77.2% and 67.3% in tafamidis-untreated patients; in those enrolled before 2019, corresponding rates were 77.7% and 66.0% in tafamidis-treated patients, and 68.7% and 58.0% in tafamidis-untreated patients (Figure 3).
- All-causality, treatment-emergent adverse events (AEs) occurred in 161 (27.4%) tafamidis-treated
- No tafamidis-treated patient had a dose reduction due to AEs and 16 (2.7%) had the study drug withdrawn (temporarily, permanently, or delayed) due to AEs.

CONCLUSIONS

- In this THAOS analysis, a real-world population of patients with ATTR-CM receiving tafamidis in clinical practice had better survival relative to a group of untreated patients.
- Survival rates in this treated population from THAOS were greater than those previously observed in ATTR-ACT² and were consistent with a more recent report,4 suggesting early diagnosis and treatment with tafamidis improved life expectancy in ATTR-CM.
- These results provide further evidence supporting the safety and effectiveness of tafamidis.

Figure 3: Kaplan-Meier plot of overall survival in patients with predominantly cardiac ATTR-CM enrolled in THAOS (A) in 2019 or later, or (B) earlier than 2019 (95% CI 75.7-87.9) (95% CI 69.8-83.1) (95% CI 56.9-75.8) Tafamidis-treated (n=431) Tafamidis-untreated (n=239) No. at risk Tafamidis-untreated: (95% CI 69.5-84.0) (95% CI 55.6-74.6) 0.5 (95% CI 64.6–72.4) 0.4 -(95% CI 53.6-62.1 Tafamidis-treated (n=156) Tafamidis-untreated (n=615)

REFERENCES

Tafamidis-untreated:

1. Ruberg FL, et al. J Am Coll Cardiol 2019;73:2872-91. 2. Maurer MS, et al. N Engl J Med 2018;379:1007-16. 3. Planté-Bordeneuve V, et al. Curr Med Res Opin 2013;29:77-84. 4. Ioannou A, et al. Circulation 2022;146:1657-70.

ATTR-CM=transthyretin amyloid cardiomyopathy; OS=overall survival; THAOS=Transthyretin Amyloidosis Outcomes Survey

DISCLOSURES

PG-P: Speaker in scientific meetings for Alnylam, BridgeBio, Ionis, Intellia, AstraZeneca, Novo Nordisk, and Pfizer; funding from Alnylam and Pfizer for scientific meeting expenses; consultancy fees from Alnylam, Attralus, BridgeBio, Neuroimmune, AstraZeneca, Novo Nordisk, Alexion, Intellia, and Pfizer; and his institution received research grants/educational support from Alnylam, BridgeBio, AstraZeneca, Novo Nordisk, Intellia, and Pfizer. AVK: Research support from and attended advisory boards for Pfizer, Neurimmune, Alnylam, Intellia, Ionis, Akcea, Novo Nordisk, AstraZeneca, and Alexion. BD: Consultancy fees from Alnylam and Eidos. MC, LA, and FSA: Full-time employees of Pfizer and hold stock and/or stock options in Pfizer. MSM: Grant support from NIH R01HL139671 and grants from Pfizer during the conduct of the study; grants and personal fees from Alnylam, Pfizer, BridgeBio, Prothena, and Ionis; and personal fees from AstraZeneca, Ionis, Intellia, and Novo Nordisk.

ACKNOWLEDGMENTS

The THAOS registry and this analysis were sponsored by Pfizer.. Medical writing support was provided by Emily Balevich, PhD, of Engage Scientific Solutions and was funded by Pfizer.

Please scan this QR code with your smartphone app to view a copy of this poster. If you don't have a smartphone, access the poster via the internet at: Please scan this QR code with your smartphone app to view a copy of this APLS. If you don't have a smartphone, access the APLS via the internet at:

