Transthyretin Amyloid Cardiomyopathy Among Patients With Hypertrophic Cardiomyopathy: Clinical, Cardiac Imaging, and Electrocardiographic Findings From the TTRACK Study

Pablo Garcia-Pavia¹, Thibaud Damy², Roberto Barriales-Villa³, Nicolas Piriou⁴, Francesco Cappelli⁵, Carmen Munteanu⁶, Catherine Bahus⁶, Denis Keohane⁶, Pablo Mallaina⁶, Perry Elliott⁷

¹Hospital Universitario Puerta de Hierro Majadahonda University Hospital, and Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; ²Assistance Publique-Hôpitaux de Paris, Henri Mondor University Hospital, Créteil, France; ³Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; ⁴Nantes University Hospital, Nantes, France; ⁵Careggi University Hospital, Florence, Italy; ⁶Pfizer Inc, New York, NY, USA; ⁷University College London, UK

INTRODUCTION

- Transthyretin amyloid cardiomyopathy (ATTR-CM) is a clinically heterogeneous, progressive, fatal disease caused by the misfolding of TTR protein forming amyloid fibrils that accumulate in the heart and other tissues and organs.^{1,2}
- Recognition and diagnosis of ATTR-CM in early stage disease is essential to allow prompt initiation of disease-modifying treatment and improve clinical outcomes.²
- Accurate noninvasive ATTR-CM diagnosis can now be achieved using nuclear imaging techniques and monoclonal protein testing in appropriate clinical scenarios, potentially facilitating early diagnosis with low risk.^{2,3}
- Despite advances in diagnostic techniques, delayed and missed diagnosis of ATTR-CM are common.⁴ Challenges in diagnosing ATTR-CM are due in part to overlapping signs/symptoms with other more common conditions.
- Increased left ventricular (LV) wall thickness, a common finding in ATTR-CM, may be mistaken for hypertrophic cardiomyopathy (HCM) in some patients with undiagnosed cardiac amyloid disease.² As a result, greater awareness is needed of the broad spectrum of manifestations that characterize ATTR-CM.
- In this analysis of the TTRACK study, we investigated ATTR-CM-related features that may heighten suspicion of amyloid disease and signal the need for additional screening in older patients with HCM defined based on the 2014 European Society of Cardiology (ESC) guidelines.⁵

PURPOSE

• To explore clinical, echocardiogram (echo), magnetic resonance imaging (MRI), and electrocardiogram (ECG) findings of older patients with HCM⁵ screened for ATTR-CM in the TTRACK study.

METHODS

 Study design: TTRACK was a multicenter, noninterventional, cross-sectional, epidemiologic study (NCT03842163) (Figure 1).

Figure 1: TTRACK study flow Patient Screening Negative radiotracer wall thickness ≥15 mm on echo) ^{9m}Tc-PYP uptake Severe aortic stenosis Visual grade 1–3° **CONTINUED** Patient consent/patient information (as available) ATTR-CM red flags • TTR gene sequencing ^a Genetic hypertropic cardiomyopathy, Fabry disease, sarcoidosis, any type of amyloidosis. ^cVisual grade 0 / 1 / 2 / 3 = absent / low / moderate / high radiotracer uptake.⁶ 99mTc=99mtechnetium; 99mTc-HMDP=99mTc-hydroxymethylene diphosphonate; 99mTc-DPD=99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid; ^{99m}Tc-PYPP=99mTc-pyrophosphate; ATTR-CM=transthyretin amyloid cardiomyopathy; ECG=electrocardiogram; echo=echocardiogram;

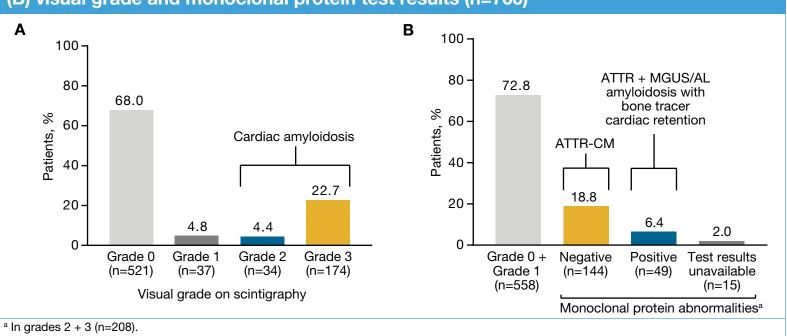
 Study sites: 20 centers in 11 countries (Australia, Austria, France, Italy, Portugal, Romania, Slovakia, Slovenia, South Korea, Spain, and the UK).

HCM=hypertrophic cardiomyopathy; LV=left ventricular; SPECT=single-photon emission computed tomography; TTR=transthyretin

- Final analysis dates: July 2018 and October 2022.
- Main eligibility criteria: Patients ≥50 years of age with HCM based on the 2014 ESC guidelines (end-diastolic LV maximum wall thickness ≥15 mm on echo).⁵ Patients with an etiologic diagnosis for HCM were excluded.

- Nuclear image review and grading:
- A nuclear medicine expert at each center and a centralized independent expert reviewer graded cardiac uptake of radiotracers on each image.
- A second central reader reviewed images with discrepant grades on the initial reading.
 The final grade was decided by a consensus of 2 of 3 readers.
- Nuclear image grading was based on cardiac vs bone radiotracer uptake following the Perugini system (**Table 1**).⁶
- Grade 2 or 3 (moderate or high) cardiac uptake was categorized as cardiac amyloidosis (CA); grade 2 or 3 and no monoclonal protein abnormalities was categorized as ATTR-CM.²
- Analyses: Descriptive statistics were used to analyse all data.

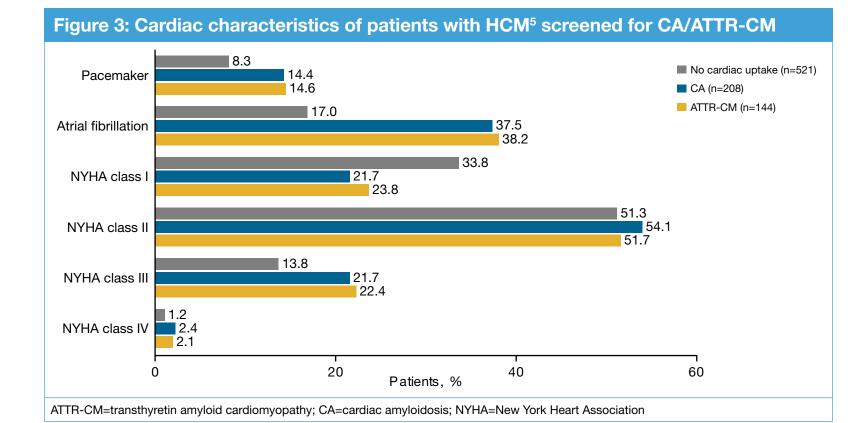
Table 1: Visual grading system for cardiac uptake of bisphosphonate radiotracers and classification of findings


CA	4777 014
CA CA	ATTR-CM
No	No
Undetermined	Undetermined
Yes	Yes/Possible ^a
Yes	Yes/Possible ^a
	Undetermined Yes

RESULTS

Patient Disposition

- Among eligible patients, 208/766 (27.2%) had CA (Figure 2A).
- Among eligible patients, 144/766 (18.8%) had confirmed ATTR-CM (**Figure 2B**).


Figure 2: Patient disposition by (A) visual grade on scintigraphy and (B) visual grade and monoclonal protein test results (n=766)

ATTR-CM=transthyretin amyloid cardiomyopathy; MGUS/AL=monoclonal gammopathy/light chain

Cardiologic Assessment

- Higher proportions of patients with ATTR-CM had pacemakers and atrial fibrillation vs patients with no cardiac uptake on imaging (**Figure 3**).
- Numerical differences in New York Heart Association (NYHA) classification were also observed in patients with ATTR-CM vs patients with no cardiac uptake.
- Lower proportions of patients with ATTR-CM were asymptomatic (NYHA class I) vs those with no cardiac uptake (23.8% vs 33.8%).
 Similar proportions in both groups had mild heart failure symptoms (NYHA class II)
- (51.7% vs 51.3%).Higher proportions of patients with ATTR-CM had more severe heart failure symptoms
- (NYHA class III/IV) vs patients with no cardiac uptake (24.5% vs 15.0%).

Cardiac Imaging and ECG Findings

- Marked numerical differences were observed in some echo findings of patients with no cardiac uptake vs those with CA and ATTR-CM (**Table 2**), including:
- Mean LV mass index (155.6 vs 177.0 and 179.0 g/m²).

HCM=hypertrophic cardiomyopathy; LV=left ventricular; LVOT=left ventricular outflow tract

- % Patients with preserved apical strain (57.9% vs 69.8% and 73.4%).
- % Patients with a concentric hypertrophic pattern (38.8% vs 77.9% and 77.5%).
- On echo, LV outflow tract (LVOT) obstruction was most common in patients with no cardiac uptake (18.4%), but it was found in ~13% of patients with ATTR-CM.
- On MRI, a substantially lower proportion of patients with no cardiac uptake (54.7%) had late gadolinium enhancement than those with ATTR-CM (85.0%) (**Table 2**).
- Notable numerical differences were seen between patients with no cardiac uptake vs those with ATTR-CM in 2 parameters on ECG (Table 3):
- PR interval (179.4 vs 197.7 ms).
- % Patients with poor precordial R wave progression (21.9% vs 48.8%).

Table 2: Cardiac imaging results in patients with HCM⁵ screened for CA/ATTR-CM

No cardiac _	Moderate or high cardiac uptake (grade 2 or 3)	
uptake (grade 0) n=521	CA n=208	ATTR-CM n=144
61.4 (10.2)	55.2 (11.2)	55.7 (11.2)
44.3 (8.2)	43.2 (7.9)	43.2 (7.5)
17.6 (2.8)	17.5 (2.4)	17.9 (2.6)
155.6 (56.9)	177.0 (53.2)	179.0 (53.1)
2.2 (0.9)	2.2 (0.7)	2.3 (0.7)
95 (18.4)	22 (10.7)	18 (12.6)
84 (57.9)	60 (69.8)	47 (73.4)
33 (6.4)	4 (2.0)	1 (0.7)
200 (38.8)	159 (77.9)	110 (77.5)
274 (53.1)	37 (18.1)	29 (20.4)
58 (11.2)	33 (16.0)	21 (14.7)
81 (54.7)	50 (87.7)	34 (85.0)
	uptake (grade 0) n=521 61.4 (10.2) 44.3 (8.2) 17.6 (2.8) 155.6 (56.9) 2.2 (0.9) 95 (18.4) 84 (57.9) 33 (6.4) 200 (38.8) 274 (53.1)	No cardiac uptake (grade 0)

Table 3: ECG results in patients with HCM⁵ screened for CA/ATTR-CM Moderate or high cardiac uptake (grade 2 or 3) No cardiac CA ATTR-CM uptake (grade 0) n=190 n=133 **Parameter** n=497 197.7 (40.2) PR interval, ms 179.4 (33.4) 201.7 (44.9) QRS interval 105.8 (23.7) 106.9 (25.3) 105.4 (26.0) 24.7 (11.1) 18.7 (8.6) 19.5 (8.6) Sokolow index 103 (21.9) 83 (46.4) 62 (48.8) Poor precordial R wave progression, n (%) 23 (12.7) 19 (14.8) 37 (7.8) Left bundle branch block, n (%) 65 (13.7) 32 (17.7) 19 (14.8) Right bundle branch block, n (%) 44 (9.3) 32 (17.7) 19 (14.8) Intraventricular conduct delay, n (%) Values are mean (SD) unless otherwise specified. ATTR-CM=transthyretin amyloid cardiomyopathy; CA=cardiac amyloidosis; ECG=electrocardiogram; HCM=hypertrophic cardiomyopathy

CONCLUSIONS

- In the TTRACK study, ~19% of patients aged ≥50 years with a clinical diagnosis of HCM (based on 2014 ESC guidelines⁵) had findings indicative of ATTR-CM.
- Although some noteworthy differences in clinical, cardiac imaging, and ECG findings were reported between patients with HCM with and without ATTR-CM, none appeared to be definitive.
- These findings suggest diagnostic evaluation of older patients with HCM should not be limited by the assumption that HCM alone is responsible for their presentation. Broader screening for amyloid disease with scintigraphy is warranted in this population.

REFERENCES

1. Ruberg FL, et al. J Am Coll Cardiol 2019;73:2872-91.

2. Kittleson MM, et al. J Am Coll Cardiol 2023;81:1076-126.

3. Garcia-Pavia P, et al. Eur Heart J 2021;42:1554-68.

4. Rozenbaum MH, et al. Cardiol Ther 2021;10:141-59.

Elliott P, et al. Eur Heart J 2014;35:2733-79.
 Perugini E, et al. J Am Coll Cardiol 2005;46:1076-84.

DISCLOSURES

PGP: Alexion, Alnylam, AstraZeneca, ATTRalus, Bridgebio, General Electric, Intellia, Ionis, Neurimmune, Novo Nordisk, and Pfizer. **TD:** Alnylam, GlaxoSmithKline, Pfizer, and Prothena. **RBV:** Consultancy fees from Alnylam, Amicus, Bristol Myers Squibb, Chiesi, Cytokinetics, Pfizer, and Sanofi. **NP:** Alnylam and Pfizer. **FC:** Akcea, Alnylam, Novo Nordisk, and Pfizer. **CM, CB, DK,** and **PM:** Employees of Pfizer and hold stock/stock options.

ACKNOWLEDGMENTS

This study was supported by Pfizer. Editorial assistance was provided by Donna McGuire of Engage Scientific Solutions and was funded by Pfizer.

Electronic Post

Please scan this QR code with your smartphone app to view a copy of this poster. If you don't have a smartphone, access the poster via the internet at:

https://scientificpubs.congressposter.com/p/tn2viuy9y1hn4uc0

