Clinical characterization and treatment patterns in patients with metastatic hormone-sensitive prostate cancer at three third-level centers of the Mexican Institute of Social Security: A retrospective cohort study

Samuel Rivera Rivera, MD1*; Libny Martínez-Valdez, MD2; Miguel Cuéllar, MSc3; Javier Medrano-Sánchez, MD4; Angélica Carolina Sandoval Méndez, MD5; Gretel Oropeza, MD⁴; Ivan Alejandro Reyes Garcìa, MD⁶; Ramón Velasco, MD⁴; Saúl Gutiérrez, MD5; Jessica Noemí Acevedo-Ibarra, PhD6,7; Bárbara Ruíz, MD8; Isabela Rivas, MD⁸; Marta Margarita Zapata Tarrés, PhD³

¹Coordination of Oncologic Attention, Mexican Institute of Social Security, Mexico City, Mexico; ²Department of Economic and Social Benefits, Mexican Institute of Social Security, Mexico City, Mexico; 3Research Coordination IMSS Foundation, Mexico City, Mexico; ⁴High Specialty Medical Unit 1 (UMAE) León, Mexican Institute of Social Security, Guanajuato, Mexico; ⁵High Specialty Medical Unit 1 (UMAE) Mérida, Mexican Institute of Social Security, Yucatán, Mexico; ⁶High Specialty Medical Unit 25 (UMAE) Monterrey, Mexican Institute of Social Security, Nuevo León, Mexico; Departamento de Ciencias de la Salud, Campus Cumbres, Universidad del Valle de México, Nuevo León, Mexico; 8 Astellas Farma Mexico S. de R.L. de C.V., Mexico City, Mexico *Presenting author.

Objectives

 To describe the demographic, clinical, and treatment-related characteristics of patients with mHSPC in reference centers for the Mexican **Institute of Social Security**

Conclusions

- In this study population, many patients had mHSPC, most of which were newly diagnosed
- Treatment patterns differed among different health centers in Mexico
- It is important to standardize patient management per clinical practice guideline recommendations, i.e., ADT intensification, among patients with mHSPC in Mexico
- Our results may improve awareness and patient enrollment, as well as promote more in-depth analyses of registry data. This could, in turn:
- Drive critical analyses related to clinical decision-making
- Inform optimal data-collection practices
- Support the strengthening of cancer registries in Mexico

Plain Language Summary

Please scan this Quick Response (QR) code smartphone app to view a plain language st the accepted scientific abstract. Please scan this Quick Response (QR) code with your smartphone app to view a plain language summary of

Electronic Poster Copies of this poster obtained through the QR code are for personal use only and may not be reproduced without permission from ASCO® or the author of this poster.

1. Reis RBD, et al. *Cancer Control.* 2020;27(1):1073274820915720.

2. Piñeros M. et al. *LRHA*. 2022:13:100294.

3. Sierra MS, et al. Cancer Epidemiol. 2016;44:S131-S140. 4. Jimenez Rios MA, et al. Cancers. 2024;16(21):3675.

- 5. Centers for Disease Control and Prevention. ICD-10-CM table of neoplasms. Available at: https://ftp.cdc.gov/pub/health_statistics/nchs/ publications/ICD10CM/2020/icd10cm_neoplasm_2020.pdf (Accessed December 2024)
- Funding: This study was funded by Astellas Pharma Inc. Support for medical writing, editing, and design was provided by O'Llenecia Walker (PhD), Jay Patel (PharmD), Rucha Kurtkoti (MSc), and Agnieszka Matusiak (MA) from IQVIA, funded by the study sponsors.
- This presentation is intended for a healthcare provider audience.

Presented at the American Society of Clinical Oncology Genitourinary Cancers (ASCO-GU) Symposium 2025 · February 13–15, 2025 · San Francisco, CA Isabela.rivas@astellas.com Background

- In Latin America, prostate cancer (PC) is the most common cancer^{1,2} and the leading cause of cancer-related death among men²
- The incidence and disease burden of de novo metastatic PC is higher in Latin America than in other global regions¹
- Several factors contribute to the higher incidence rate, including advancing age, variable access to healthcare, advanced disease presentation at diagnosis, differences in diagnostic and registration practices, and limited public awareness³
- Epidemiological data are essential for developing screening protocols and management strategies for patients with PC in Mexico⁴
- Despite efforts in select institutions in Mexico to register and organize data on patients with PC,4 epidemiological data are scarce1,4

Methods

Study design

- Retrospective, observational cohort study, examining paper and electronic health records of patients diagnosed with PC between January 1, 2017, and June 30, 2023
- All statistical analyses were descriptive, with data reported as percentages and means

Study population

- Adult (≥18 years) patients with newly diagnosed or recurrent metastatic hormone-sensitive PC (mHSPC)
- The patients were treated at one of the three tertiary hospitals of the Mexican Institute of Social Security and received ≥1 follow-up consultation after the index date (date of mHSPC diagnosis)
- Criteria for mHSPC diagnosis and study inclusion:
- ICD-10 code C61 or D40⁵
- Inclusion of "prostate cancer," "adenocarcinoma of the prostate," or "malignant tumor of the prostate" in patient charts

- Radiologic confirmation and stage IV/metastatic disease diagnosis by an oncologist/urologist
- Hormone sensitivity with/without prior androgen-deprivation therapy (ADT) (having stopped ADT ≥12 months before confirmation of metastatic disease)
- Criteria for study exclusion:
- Stage of PC could not be determined
- Evidence/diagnosis of castration-resistant PC (CRPC)
- Defined as testosterone at castration levels (≤50 ng/dL) and one of the following: prostate-specific antigen (PSA) >2 ng/dL plus two rising PSA levels at an interval of ≥7 days and an increase of >50% in the second rising PSA value from the lowest value and/or radiographic progression
- Previous treatment for mCRPC
- Diagnosis of other primary forms of cancer or incomplete patient charts
- Patients were stratified using the tumor, node, metastasis (TNM) staging system for PC (8th ed)
- Only metastatic disease (i.e., any T or N and distant metastases [M1]) was considered at baseline

Results

PATIENT CHARACTERISTICS

- In total, 454 patients' charts were reviewed: 246 (54%) did not have metastatic disease, 42 (9%) had metastatic CRPC (mCRPC), and 166 (37%) had mHSPC (Figure 1)
- The latter subgroup formed the basis for this study
- Of the 166 patients (mean age [standard deviation (SD)], 69.5 [8.3] years) (**Table 1**), 108 patients (65%) were newly diagnosed; in the remaining 58 patients (35%), non-metastatic hormone-sensitive PC (nmHSPC) had progressed to mHSPC (Figure 1)
- 117 patients (71%) had Gleason score ≥8, 127 patients (77%) had evidence of primary tumor (T1-T4), 33 patients (20%) had confirmed nodal spread (N1), and 108 patients (65%) had confirmed metastases (M1) at the time of diagnosis (**Table 1**)

TREATMENT PATTERNS

 Patients received the following treatments: gonadotropin-releasing hormone (GnRH) agonist (n = 149), GnRH antagonist (n = 4), orchiectomy (n = 3), androgen receptor pathway inhibitor (ARPI) (n = 48), and chemotherapy (n = 31); unreported (n = 7) (Figure 2)

TREATMENT DISCONTINUATION

 In 35 patients, as guided by their physicians, treatment was discontinued due to biochemical progression (n = 7), radiological progression (n = 2), radiological and biochemical progression (n = 2), major adverse events (n = 2), loss of response (n = 3), death (n = 2), or progression due to an unspecified cause (n = 17) (Figure 3)

ADVERSE EVENTS

 During the study period, 10 adverse events and 3 cancer-related deaths were reported (**Table 2**)

Figure 1. Number of Patient Charts Reviewed

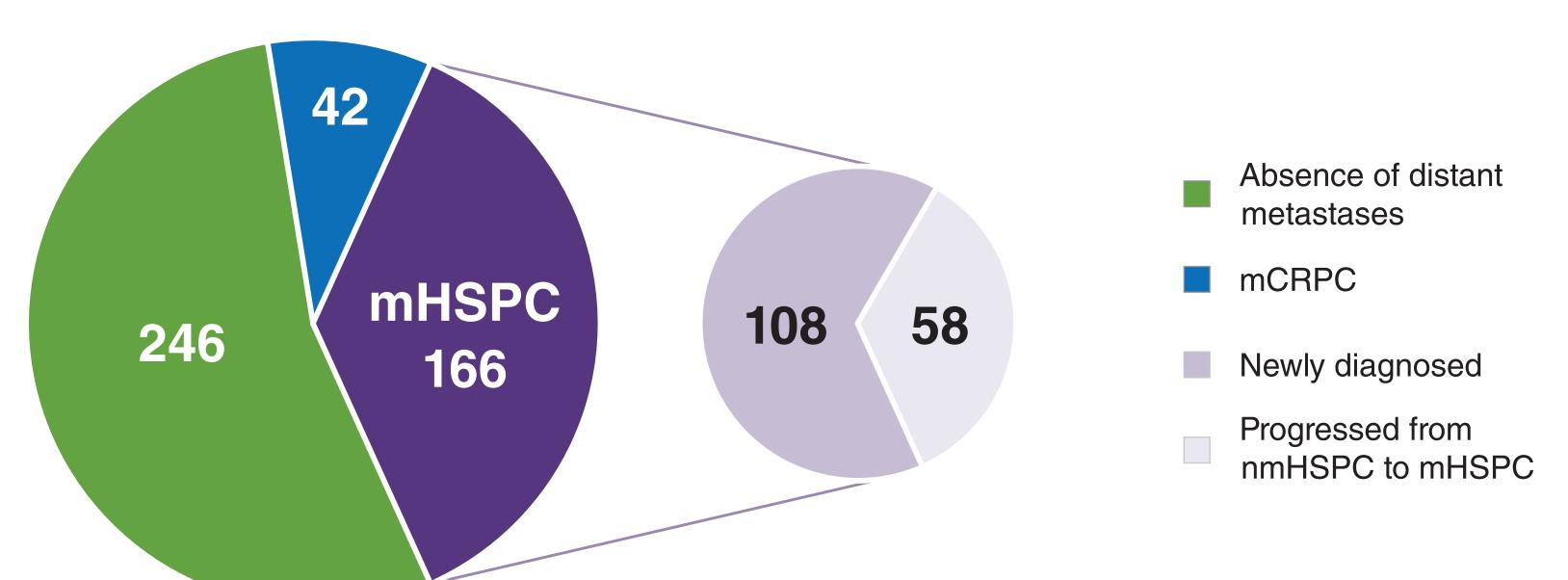


Table 1. Baseline Patient Characteristics at Diagnosis

Parameter	N = 166
Patient age, years; mean (SD)	69.5 (8.3)
Gleason score, n (%)	
6	9 (5)
7	37 (22)
8	51 (31)
9	53 (32)
10	13 (8)
Unknown	3 (2)
Disease staging T, n (%)	
T1	39 (24)
T2	51 (30)
T3	25 (15)
T4	12 (7)
TX	40 (24)
Disease staging N, n (%)	
NO	85 (51)
N1	33 (20)
NX	48 (29)
Disease staging M, n (%)	
MO	43 (26)
M1	108 (65)
MX	15 (9)

Abbreviations: M0, absence of distant metastases; M1, distant metastases; MX, distant metastases cannot be assessed; No, no nodal involvement; N1, nodal involvement; NX, nodal involvement cannot be assessed; T1/T2/T3/T4, size and/or extent of primary tumor; TX, primary tumor cannot be assessed.

Figure 2. Summary of Treatment Types

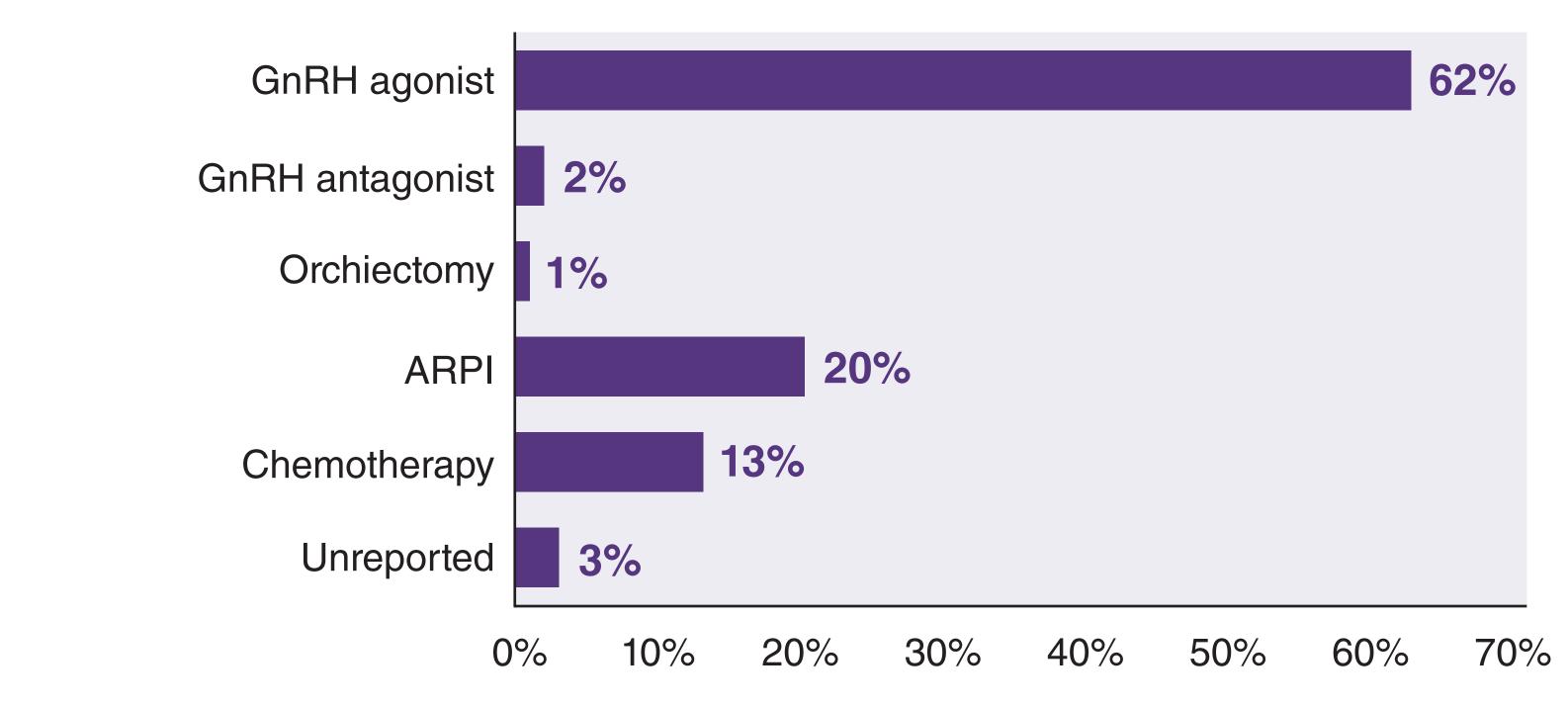


Figure 3. Reasons for Treatment Discontinuation^a

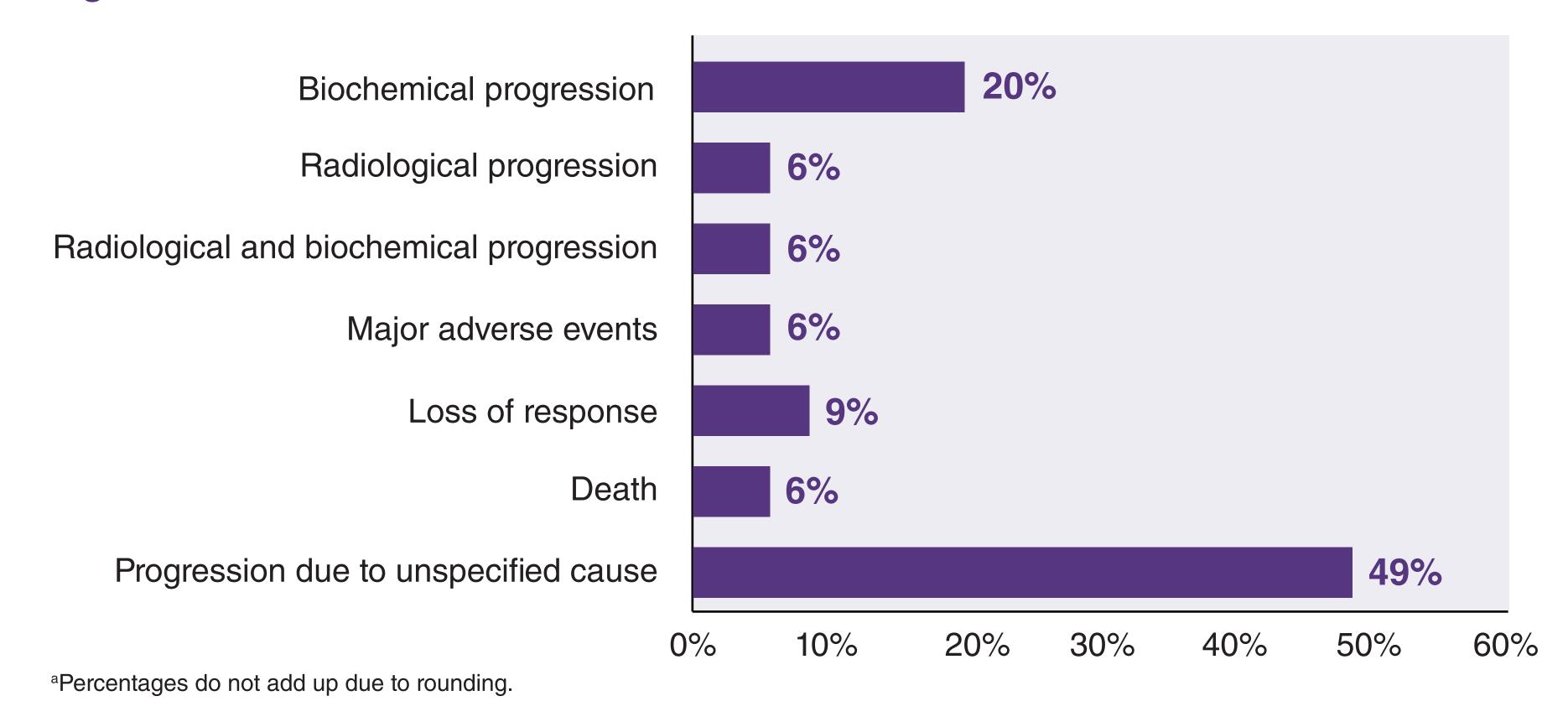


Table 2. Adverse Events^a

Number of patients **Adverse events** Grade 3 Grade 4 Unspecified **Deaths due to cancer**

^aThese adverse events were reported by physicians at the time of examination, but there was a paucity of data in clinical records regarding the description of adverse events.