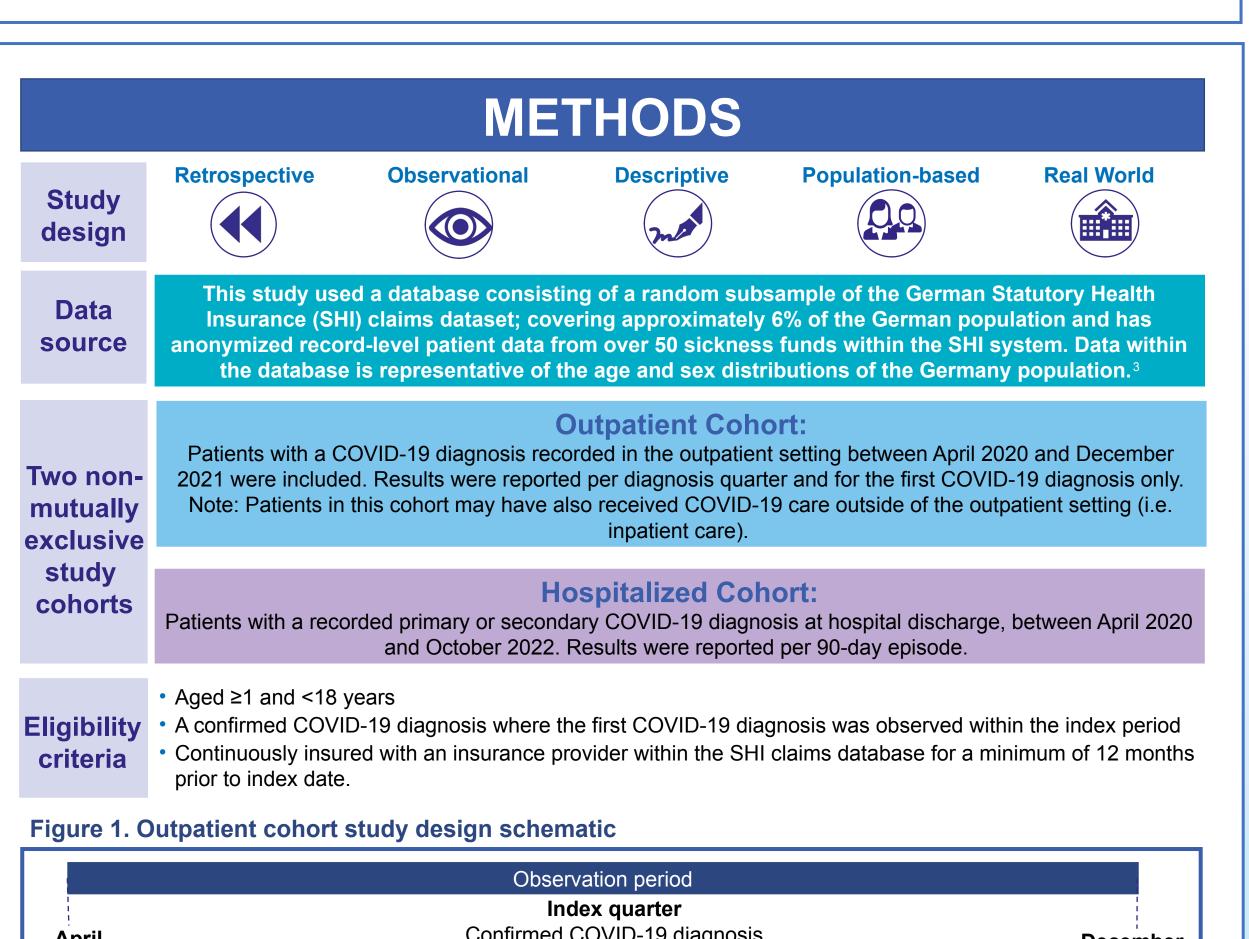
COVID-19- related Healthcare Resource Utilization and Direct Costs in Paediatric Patients In Germany: A Population-Based Study

Authors: Jingyan Yang^{1,2}, Kiran K. Rai³, Monica Seif³, Hannah R. Volkman¹, Jinma Ren⁴, Hannah Gowman³, Lucy Massey³, Jennifer L. Nguyen¹


¹Pfizer Inc., New York, United States; ²Institute for Social and Economic Research and Policy, Columbia University, New York, NY, USA; ³Adelphi Real World, Bollington, United Kingdom; ⁴Pfizer Inc., Collegeville, PA, United States

INTRODUCTION

- Although COVID-19 is less severe in paediatrics compared to adults, it has been estimated that ~20% of hospitalized paediatric patients require anti-SARS-CoV-2 therapy [1], of whom 3% require intensive care support [2]. Patients with underlying health conditions are at an increased risk of poorer COVID-19 related outcomes [1,3].
- Over the course of the pandemic, paediatric morbidity decreased in Germany, except during Delta variant predominance, where an increase in hospitalisations was observed among those aged less than 5 years [4].
- Little is known about the economic burden of COVID-19 in paediatrics in Germany. Evidence is needed to quantify the patient-level costs which can be used to inform healthcare budget allocation and health policy.

OBJECTIVE

This study aimed to quantify healthcare resource utilization and associated among paediatric patients with a recorded COVID-19 diagnosis in the outpatient and hospital setting in Germany, separately.

April 2018	Index quarter Confirmed COVID-19 diagnosis (April 2020 [2020 quarter 2] – December 2021 [2021 quarter 4])		December ter 4]) 2021	
	Baseline period (Up to 24 months)	Follow-up period	Follow-up period (per diagnosis quarter)	
Observation period a	aligns with the most up-to-date	outpatient data available at the time of data extraction.	Censor at: date of death, end o data availability or end of study period	
igure 2. Hos	pitalized cohort study			
igure 2. Hos	pitalized cohort stud	Observation period		
	pitalized cohort stud		31 st December 2022	
1 st April	Baseline period (Up to 24 months)	Observation period Index date Confirmed COVID-19 diagnosis (1st April 2020 – 2nd October 2022)		

METHODS (continued) Sociodemographics Medication use Medication use Hospitalizations Critical Care Admissions Medication use Total Direct Healthcare Costs Stratifications Age Risk of severe COVID-195

RESULTS

In total, 104,656 COVID-19 paediatric patients (1-17 years) were included in the outpatient cohort, and 3,129 in the hospitalized cohort (Table 1).

Table 1. Baseline sociodemographic and clinical characteristics of COVID-19 paediatric patients within the outpatient and hospitalized cohorts

	Outpatient (n=104,656)	Hospitalized (n=3,129)
Sex (male), n (%)	54,066 (51.7)	1,551 (49.6)
Age (in years) at index		
≥1 and <5, n (%)	25,597 (24.5)	1,132 (36.2)
≥5 and <12, n (%)	41,129 (39.3)	863 (27.6)
≥12 and <18, n (%)	37,930 (36.2)	1,134 (36.2)
At risk of severe COVID-19, n (%)	64,449 (61.6)	2,569 (82.1)
Immunocompromised status (immunocompromised), n (%)	129 (0.1)	27 (0.9)
Quan-Charlson Comorbidity Index (Quan-CCI), mean (SD)	0.2 (0.5)	0.4 (0.9)

- In the **outpatient cohort**, approximately half were female, ~25% were aged <5 years, over half were at risk of severe COVID-19, 0.1% were immunocompromised and the mean Quan-CCI score was 0.2.

 In the **hospitalized cohort**, approximately half were female, ~36% were aged <5 years, the majority were at risk of
- In the **hospitalized cohort**, approximately half were female, ~36% were aged <5 years, the majority were at risk of severe COVID-19, 0.9% were immunocompromised and the mean Quan-CCI score was 0.4.

HCRU IN THE OUTPATIENT COHORT


- Amongst the outpatient cohort, 76.8% had ≥2 family physician consultations and 28.8% had ≥1 outpatient specialist consultation during the COVID-19 diagnosis quarter (Figure 3).
- The proportion of patients attending outpatient consultations (family physician and specialist) was highest in the youngest age group (aged 1-4), and in those at risk of severe COVID-19 (see Figure 3 for all stratified results).
- COVID-19 medication use was low overall (n=820; 0.8%) but was greatest in the aged ≥1 to <5 group (1-4 years: 2.9% [n=739]; 5-11 years: 0.2% [n=75]; 12-17 years: <0.1% [n=6]) and those at risk of severe COVID-19 (at risk; 1.0% [n=666]; not at risk: 0.4% [n=154]).

HCRU ASSOCIATED COSTS IN THE OUTPATIENT COHORT

- The median (Q1, Q3) cost per COVID-19 diagnosis quarter per patient was €1,095 (€192, €1,417) which includes family physician, outpatient specialist and COVID-19 related medication costs.
- The median cost per COVID-19 diagnosis, per patient was highest in those aged 12-17 years (1-4 years: €572 [Q1, Q3: €195, €1,403]; 5-11 years: €871 [€202, €1,397]; 12-17 years: €1,256 [€189, €1,422]), and those at risk of severe COVID-19 (at risk: €1,263 [€210, €1,385]; not at risk: €576 [€225, €1,401]).

HCRU IN THE HOSPITALIZED COHORT

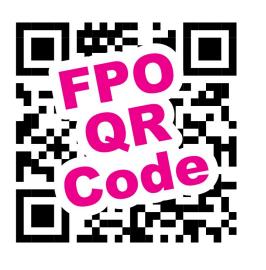
- The overall mean (SD) length of hospital stay (LoS) in non-critical care admissions, per patient per admission, was 8.5 (9.0) days, which was highest in those aged 1-4 years (9.3 [10.0] days), and those at risk of severe COVID-19 (9.2 [12] days) (Figure 4).
- 13% (n=406) of patients were admitted to critical care. The mean LoS in critical care, per admission, was 49.2 (69.0) days. When stratified by age and risk of severe COVID-19, LoS in critical care was greatest among those aged 1-4 years (50.2 [69.0] days), and those at risk of severe COVID-19 (52.3 [67] days) (Figure 5). However, <5 patients received mechanical ventilation.
- Only 13 (0.4%) patients received COVID-19 medication during their hospitalization.
- HCRU ASSOCIATED COSTS IN THE HOSPITALIZED COHORT
- The median (Q1, Q3) cost per admission was €12,503 (€4,307,€17,829); this was highest in those aged 1-4 years (1-4 years: €14,930 [€4,123; €16,482]; 5-11 years: €13,948 [€5401; €14,829]; 12-17 years: €9,100 [€3,942; €16,380]) and at risk of severe COVID-19 (at risk: €13,049 [€4,849, €15,201]; not at risk: €9,807 [€4,307, €17,834]) (Figure 6).
- When stratified by type of inpatient admission, similar patterns were noted, with the highest costs observed in those with a critical care admission.

CONCLUSIONS

- The hospitalized cohort had a greater proportion of patients that were aged <5 years and at an increased risk of severe COVID-19.
- High HCRU and associated costs have been largely driven by COVID-19-related hospitalizations, particularly critical care admissions.
- HCRU associated costs were higher in those aged 1-4 years in the hospitalized cohort, whereas in the outpatient cohort costs were highest in 12-17 years.
- HCRU associated costs were higher among those at risk of severe COVID-19, across both cohorts.
- Future research should explore the longer-term healthcare burden of COVID-19, and impact of the different COVID-19 variants on healthcare systems in Germany.

References

- 1. Sorg, AL., Hufnagel, M., Doenhardt, M. et al. Risk for severe outcomes of COVID-19 and PIMS-TS in children with
- SARS-CoV-2 infection in Germany. Eur J Pediatr 181, 3635–3643 (2022). https://doi.org/10.1007/s00431-022-04/
 2. Doenhardt, M., Hufnagel, M., Diffloth, N. et al. Epidemiology of 7375 children and adolescents hospitalized with COVID-19 in Germany, reported via a prospective, nationwide surveillance study in 2020–2022. Sci Rep 14, 47 (2024). https://doi.org/10.1038/s41598-023-49210-1
- 3. Yang J, Andersen KM, Rai KK, Tritton T, Mugwagwa T, Tsang C, Reimbaeva M, McGrath LJ, Payne P, Backhouse B, Mendes D, Butfield R, Wood R, Nguyen JL. Health Care Resource Utilization and Costs Associated With COVID-19 Among Pediatrics Managed in the Community or Hospital Setting in England: A Population-based Cohort Study. Pediatr Infect Dis J. 2024 Mar 1;43(3):209-216. doi: 10.1097/INF.0000000000004213. Epub 2023 Dec 18. PMID: 38113517
- 4. Jank, M., Oechsle, AL., Armann, J. et al. Comparing SARS-CoV-2 variants among children and adolescents in Germany: relative risk of COVID-19-related hospitalization, ICU admission and mortality. Infection 51, 1357–1367 (2023). https://doi.org/10.1007/s15010-023-01996-y
- 5. Robert Koch-Institut. *Epidemiologischer Steckbrief zu SARS-CoV-2 und COVID-19 15. Risikogruppen für schwere Verläuf*e. [cited 2022]; Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html?


Acknowledgments

www.companyname.com

nn=13490888#doc13776792bodyText15

Jingyan Yang, Hannah Volkman, Jinma Ren and Jennifer L Nguyen are employees of Pfizer and may hold stock or stock options. Kiran K. Rai, Monica Seif, Hannah Gowman and Lucy Massey are employees of Adelphi Real World, which received funds from Pfizer to conduct the study and develop the manuscript. **Funding:** Funding for this study was provided by Pfizer Inc. Pfizer Inc. commissioned Adelphi Real World to independently conduct the study. The acquisition of SHI data and analysis was supported by a third party in Germany, LinkCare.

For more information please contact:
First Initial, Last Name, Credentials
Company, Inc.123 Main Street; Anytown, XX, 12345
Phone: XXX-XXX-XXXX
email: firstname.lastname@.companyname.com

